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A Hamiltonian formulation of general relativity based on certain spinorial variables is introduced.
These variables simplify the constraints of general relativity considerably and enable one to imbed the
constraint surface in the phase space of Einstein’s theory into that of Yang-Mills theory. The imbedding
suggests new ways of attacking a number of problems in both classical and quantum gravity. Some illus-

trative applications are discussed.

PACS numbers: 04.60.+n, 04.20.Fy

Attempts at constructing perturbative quantum gravity
have been unsuccessful. It is now generally believed that
the problem lies in the basic assumption of the perturba-
tion theory that the true space-time structure can be well
approximated by a classical background geometry even
below the Planck scale. From this standpoint, there is lit-
tle hope in retaining the general perturbative framework
and simply changing, e.g., the form of the Einstein
Lagrangean by adding higher-derivative terms or super-
symmetric matter. A more promising direction is to face
the problem nonperturbatively. For, as has been em-
phasized by J. Klauder over the years, quantum gravity
may well exist as an exact theory in spite of perturba-
tive nonrenormalizability. The canonical quantization
scheme provides a natural avenue in this direction since it
does not require the fixation of a classical background
geometry. Furthermore, the fact that the Hamiltonian
structure of general relativity has certain essentially non-
perturbative features—in the exact theory, the Hamil-
tonian is essentially given by the constraints, while the
two decouple in any order in perturbation theory—sug-
gests that qualitatively new results may arise from exact
canonical quantization.

Over the years, the main obstacle to the canonical
quantization program has come from the fact that the
constraint equations have a complicated, nonpolynomial
dependence on the traditional canonically conjugate vari-
ables. The purpose of this Letter is to report the ex-
istence of new variables in terms of which the constraints
simplify considerably and to point out that the use of
these variables provides new, nonperturbative approaches
to problems in both classical and quantum gravity.

Let us begin with some mathematical preliminaries.
Fix a three-manifold X and consider on it, in addition to
tensor fields, 7% %, 4, fields with “internal” SU(2) in-
dices, A%, p14,. ... The SU(2) structure provides us with
volume forms, £42 and €43, on internal indices, satisfying
e8¢ ,p=6%p. We shall use them to raise and lower
these indices: A% =g*Brp and p,4:=puBep4. Now, given
any isomorphism o§? between tangent vectors ¥? and
second-rank, trace-free, Hermitian fields ¥4, the identi-
fication V?= — of4V8 solders the internal indices to the
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tangent space of £ and makes them SU(2) spinor indices.
Furthermore, each soldering form, o, is a “square root”
of a (positive definite) metric g, on Z,

qab: =0."B0sMNe spepn = —Tro, 0, (1)

and singles out a unique torsion-free connection D on ten-
sor and spinor fields on X satisfying

D,,SAB ‘0, DaO'bAB =(. (2)

The configuration space € for general relativity is to
be the space of all (suitably) regular and, if £ is noncom-
pact, asymptotically well-behaved soldering forms o%45.
The phase space I is the cotangent bundle over @. Thus,
a point of I" consists of a pair (0®15,M,My), where M, a
density of weight 1, is the momentum canonically conju-
gate to 0. The canonical variables (gg,p%) of the tradi-
tional Hamiltonian formulation! are now to be regarded
as “derived” quantities: g is given by (1) and p® by

pab: - — TrMmG(aqb)mEM(ab). 3)
As usual, not all points of T are accessible to the physical

gravitational field: There are constraints. First, we have
the familiar constraints

C%(o,M):=D,p**=0, 4)
Clo,M):=(ppy — +p?) — (d—gtflR -0, )

where R is the scalar curvature of g,5. However, since
we have enlarged the configuration space from the space
of the six-component fields g, to that of the nine-
component fields o0®4p, we have three new constraints:

Mlabl =@, 6)

The canonical transformations generated by these con-
straints cause SU(2) rotations on the internal indices of
oand M.

The above framework is equivalent to the familar triad
formalisms. The key new step is the introduction of new
variables on I'. Given any point (o,M) of T, introduce
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two connections =D on X:
£ Daapp: =Daapp + G /N2 opNagn, (7
where Iz is given by?
Maa™
=G (detq) “2(Mp™ — L oan™ P asMp™E).  (8)

The use of these connections simplifies the structure of
constraints (4) and (5) considerably. To see this, intro-
duce connection one-forms T A, and curvature two-forms
+ . . +

= F,p associated with — D:

i.ﬂaau=:aaaM+G tAaMNaN, (9)
Zi.ﬂ[aiﬂb]au":G i[’_",I,MN(.ZN, (10)

where 9 is a fixed (c number) connection, also satisfying
9,648 =0. Then (6) can be rewritten as

*D,0°45 =0, (6"
and, modulo (6), Egs. (4) and (5) can be recast as

Tro® * Fa =0, 4"

Tro®c? * Fap =0. (5

(Throughout, * stands for + or —; we can use either
*A4, or “A,.) Constraints (4)-(6") are closed under the
Poisson bracket and preserved by dynamics.

Note that the form of constraints (4")-(6") is simpler
than that of (4)-(6) in at least two respects. First,
(4)-(6") are at most quadratic in each of the new vari-
ables (0%, % A4,) while (4)-(6) involve nonpolynomial
functions of q4. Second, if one were to regard iA,, as
the new configuration variable and o° as the “momen-
tum,” (5') involves only a “kinetic” term, quadratic in
the new momenta, and is therefore structurally similar to
the strong-coupling limit of (5) in which the “potential”
term, R, is neglected. [This came about because * A,
knows both about p? and (the connection of) gg.]
These features lead to new avenues especially in the
quantum theory.

What is the physical interpretation of *4,? Consider
a solution of g4 of Einstein’s equation obtained from ini-
tial data (0% ,M,) [satisfying (4)-(6)]. Then one has the
following: T2 are the restrictions to X of the four-
dimensional spin-connection V on (un)primed SL(2,C)
spinors  (e.g., *Dahar =q"Vohm), and Tr T Foe??

=(v2/G)(E“F iB9), where E* and B are the elec-
tric and magnetic parts, relative to Z, of the Weyl tensor
of ga. Thus, T A, is a potential for the (anti-)self-dual
part of the Weyl tensor. This fact leads to an interesting
application: One can obtain (complex Lorentzian or,
with minor convention changes, real Euclidean) self-dual
solutions to Einstein’s equation by simply setting
*A, =0. This Ansatz trivializes (4') and (5') and simpli-
fies (6') as well as the evolution equations (which, in-

cidentally, automatically preserve the Ansatz). The re-
sulting system of equations provides a new, simple, and
convenient characterization of self-dual solutions.> Tra-
ditionally, H-space and twistor techniques have been used
to study these solutions.* The new variables serve to
bridge these techniques to the Hamiltonian methods.
Other applications, to classical relativity, include the fol-
lowing: analysis of gravitational perturbations; interest-
ing, exact solutions to constraint equations; understand-
ing and generalizing of the results® on the relation be-
tween certain classes of solutions to Einstein’s and
Yang-Mills equations; and the use and role of hypersur-
face twistors in general relativity.

On the phase space I', the new variables have several
interesting properties. Each of {*A4.}, {"4,}, and
{6°=(detq)26% forms a complete set of commuting
variables with respect to the natural Poisson bracket on
I'. Furthermore, * A, is “conjugate” to &° in the sense
that

{* 4,MN(x),6%48 (»)}p 3.
=+ (i/V2)6,°6.M55P5(x,p). (11)

[The factor of G in (9) ensures that (4)- (&) has dimen-
sions of action.] I shall therefore use 6* and * A, as the
basic variables. [Note that one can replace ¢ by &° in
the constraints (4)-(6') free of charge.] These proper-
ties suggest identifications with certain variables that are
featured in the Yang-Mills theory. T A, is the connec-
tion one-form; TB%=gctF, its magnetic field; and
&°, the analog of the electric field E%. In terms of these
Yang-Mills variables, the constraints become

*D-E=0, 6"
TrExB =0, 4"
TrE- (ExB) =0. (5"

Thus, every initial datum (satisfying constraints) (o,M )
for Einstein’s equation yields initial data (A,E) for
Yang-Mills equations which, in addition, satisfy four
constraints which are purely algebraic in field strength;
one has an imbedding of the Einstein constraint surface
into the Yang-Mills theory. This imbedding preserves
the Poisson-bracket structure of the two theories. On the
other hand, it does not commute with time evolution; the
Yang-Mills Hamiltonian is very different from Einstein’s.
However, since the Einstein Hamiltonian is a linear com-
bination of constraints and a surface term, the simplifica-
tion of constraints is significant also for Einstein dynam-
ics.

To go over to quantum theory, as in the Yang-Mills
case, we shall replaceA the basic variables iA,J and
&*=E* by operators * A4, and 6° satisfying the canonical
commutation relation

[i,i,,,””(x),&",w(y)]

=(h/V2)6,8Ms)6(x,y). (12)
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The shift of variables from (4,5 ) to 6,*4) simplifies several issues in the quantum theory as a result of the features of
constraints (4')-(6"), noted below (5'). I now summarize the construction and the results that follow.

First, one can ask if there exists a factor ordering for the quantum version of constraints (4')-(6") for which the quan-
tum constraints are closed under the commutator bracket, i.e., for which the evaluation of commutators yields a result in
which a constraint operator always appears on the right. The answer is in the affirmative. Set

Cn:=(2/h )sz “INB(ED,5) 54+ NOTrs? £ Fop+ N Tré°6® * Fop, (13)
where N stands for the triplet of smearing fields (V%,N% N). By use of (12) it then follows that

[éN;éM] -éPv

where

PB=IN ML B4+G 'NMPEFpy B+G ' (MN®— NM) (" M EFyore® — 6°48 T Fpp ™),

(14)

P®= L\ N*+2(NDyM —MDyN)§®, P=LyN—LyM.

In this result, the presence of internal indices and the
consequent constraint (6') plays a crucial role: Certain
unwanted terms vanish because of the symmetry proper-
ties of their internal indices, and the commutators of (4')
and (5') involve not only these constraints but also (6').
Also, the presence of the internal indices in (4')-(6") (as
well as of 6% the “square root” of §°®) makes it impossi-
ble to translate the preferred factor ordering in terms of
the traditional variables (éab,ﬁb). Note, however, that
the argument is only formal; I have not regularized the
products of operator-valued distributions in (4')-(6").
Nonetheless, formal closure is significant since it can fail
even for systems with a finite number of degrees of free-
dom® where the issues of regularization never arise.

Next, we come to the issue of finding representations
of the canonical commutation relation (12). Since, as
noted above, the constraints are at worst quadratic in
each of 6” and A,, it is feasible to study both the & repre-
sentation, in which quantum states are general complex-
valued functionals of &, and the ¥ A, representation, in
which they are holomorphic functionals of *A4,. [The
analogs for a simple harmonic oscillator are respectively
the position representation, y=y(x), and the Bargmann
representation, y=(z), z =x +ip.] This is in striking
contrast to the situation with (qab,p"b ) variables, where
the momentum representation is unmanageable because
the constraints have a complicated g dependence.

Let us focus on the ¥ A4, representation since it enables
one to borrow some ideas from (quantum) Yang-Mills
theory. The weak-field limit has been studied in detail.
Here, the quantum constraints are solved precisely by the
requirement that the states be holomorphic functionals of
the symmetric, trace-free, transverse part (845)57TT of
the linearized connection (6% A4,), and the Hamiltonian
is given simply by

H =(G/4n) fz (54)STT(54) 85 dx as)

(which is analogous to the expression H =ZZ* for the
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simple harmonic oscillator). In exact theory the repre-
sentation is being investigated by Jacobson and Smolin.”

Next, note that the constraints (4")~(6") in terms of
the Yang-Mills variables (¥ A4,,E%) do not require a
background structure such as a metric or a derivative
operator. (This is to be contrasted with the Yang-Mills
evolution equations which do require a background
metric.) Consequently, one can take over techniques
from the Hamiltonian lattice QCD® to put the quantum
gravity on a lattice. The advantage of a lattice formula-
tion is that the constraints do not have to be regularized.
This line of investigation is being pursued by Renteln and
Smolin.®

Finally, I have restricted the discussion to the vacuum
case only for simplicity. It is straightforward to include a
cosmological constant and matter sources— Yang-Mills
sources fit in especially well—in the framework.

Details will appear elsewhere.
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