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The Quantum Theory of the Electron. Pari I1.
By P. A M. Dirac, St. John’s College, Cambridge.

(Communicated by R. H. Fowler, F.R.S.—Received February 2, 1928.)

In a previous paper by the author* it is shown that the general theory of
quantum mechanics together with relativity require the wave equation for an
electron moving in an arbitrary electromagnetic field of potentials, Ay, A,
A,, A; to be of the form

— e ' e / e
Fy = [Po'*‘; Ao+ 0c1<p1+ 'O‘A1)+“2{‘P2+'5‘A2>

+ ag (1’3 + %Aa> + “4'”"0] $=0 ()

The o’s are new dynamical variables which it is necessary to introduce in order
to satisfy the conditions of the problem. They may be regarded as describing
some internal motion of the electron, which for most purposes may be taken
to be the spin of the electron postulated in previous theories. We shall call
them the spin variables. '

The o’s must satisfy the conditions

ot=1, ot oau, =0 (p#v)

They may conveniently be expressed in terms of six variables g, ps, P35 0,
Gy, 63 that satisfy

p2=1  of=1 o0, =o0p (r,s=1,2,3)
: 2

and
P1P2 = W3 = — Paf1y, G102 = 103 = — 090y

together with the relations obtained from these by cyclic permutation of the

suffixes, by means of the equations

% = P101 % = P10 %3 = P103; %4 = Q3
The variables o,, 6,, 65 now form the three components of a vector, which
corresponds (apart from a constant factor) to the spin angular momentum vector
that appears in Pauli’s theory of the spinning electron. The p’s and ¢’s vary
with the time, like other dynamical variables. Their equations of motion,
written in the Poisson Bracket notation [ 1, are

ér =0 [Pr: F]: C;'r =c [Gﬂ F]'
* ¢ Roy. Soc. Proc.,” A, vol. 117, p. 610 (1928). This is referred to later by loc. cit.
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It should be observed that these equations of motion are consistent with the
conditions (2), so that if the conditions are satisfied initially they always remain
satisfied. For example, we have

thje . 6; = 6,F — Fo, = 2ip,05 (pg + €fc . Ay) — 2ip,0, (p3 + €c . Ay).
Thus &, anticommutes with o;, so that
do,?/dt = 6,6, -+ 6,0y = 0.

The p’s and ¢’s, and therefore also any function of them, can be represented
by matrices with four rows and columns. = A possible representation, in which
03 and o are diagonal matrices, is given in (loc. cit.) § 2.  Such a representation
can apply only to a single instant of time, since the ¢’s and ¢’s vary with the
time. To get a scheme of representation which holds for all times, so that the
equations of motion are valid in it, we should have to have only constants of
the motion as diagonal matrices. It.is, however, quite correct for the purpose
of solving the wave equation (1) to take a matrix representation for the p’s
and o’s which holds only for a single instant of time (as was done in loc. cit.),
since the wave function is then the transformation function connecting the
0’s, 6’s and #’s at this particular time with a set of variables that are constants
of the motion, as is required for the general interpretation of quantum

“mechanics.

Before we proceed with the theory of atoms with single electrons that was
begun in loc. cit., the proof will be given of the conservation theorem, which
states that the change in the probability of the electron being in a given volume
during a given time is equal to the probability of its having crossed the boundary.
This proof is supplementary to the work of loc. cit. § 3, and is necessary before
one can infer that the theory will give consistent results that are invariant
under a Lorentz transformation.

§ 1. The Conservation Theorem.

‘We shall first make a slight generalisation of the usual interpretation of wave
mechanics to apply to cases when the Hamiltonian is not Hermitian. Let
the wave equation, written in certain variables g, be

(H—W){ =0. @)
Consider also the equation
(H—-W)¢ =0
B+ W)$=0, (i)
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where the symbol & denotes the matrix obtained from the matrix a by trans-
posing rows and columns. If {,, ¢, are suitably normalised solutions of (i)
and (ii) respectively, referring to the states m and n, we take ¢,{,, to be the
corresponding matrix element of the probability of the ¢’s having specified
values. If H is Hermitian, H is the conjugate imaginary of H (obtained by
writing — ¢ for 4) and the solutions of (ii) are just the conjugate imaginaries
to the solutions of (i), so that in this case our probability ¢,¢,, becomes the
usual one {),{,. In the general case it is necessary to use the transposed
Hamiltonian instead of the conjugate imaginary Hamiltonian in (ii) in order
to secure that if &,, {,, are initially orthogonal or mutually normalised

<fi.e., J Gnlm dg = 1>, they alway$ remain orthogonal or mutually normalised

respectively.
Our wave equation for an electron in an electromagnetic field is

[po+€Ag+p1(, D+ €A)+ pgme] § =0 (3)

where ¢’ = e/c. The Hamiltonian here will be Hermitian if a matrix scheme
for the spin variables is chosen in which they are Hermitian. However, if one
now applies a Lorentz transformation to this wave equation and divides out
by the coefficient of the new p,, the resulting new Hamiltonian will not, in
general, be Hermitian, although, as shown in loc. cit., § 3, it may be brought
back to its original Hermitian form by a canonical transformation of the matrix
scheme for the spin variables. In the following work we require to have the
same matrix representation of the spin variables for all frames of reference,
s0 we cannot assume our Hamiltonian is Hermitian, and must use the above
generalised interpretation.

The equation obtained by transposing rows and columns in the operator of
3) is

[—po+ €Ay +3.(S, —p+ €A+ pgme] ¢ = 0. (4)

The probability per unit volume of the electron being in the neighbourhood of
any point is given, according to the above assumption, by $¢, where this
product must now be understood to mean the sum of the products of each of the
four components of ¢ (referring respectively to the four rows or columns of the
matrices , o) into the corresponding component of ¢. We have to prove that
this probability is the time component of a 4-vector, and that the divergence
of this 4-vector vanishes.
VOL. CXVIII.—A. 2 A
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From (3)
[ps (Po+€'Ag) + pipa (=, p+€'A) +me] o3 = 0
or -
['Yo (?o -+ e,Ao) + Zr:l,?.,:} Yr (Pr -+ elAr) -+ mc])(, =0, (5)
where

Yo = Pz  Yr= pPi1Ps0r» X = PaY-

Equation (5) is symmetrical between the four dimensions of space and time,

and shows that y,, — vy;, — Y9, — Y3 are the contravariant components of a
4-vector. If we multiply (4) by p5 on the left-hand side, we get

. [To(—po+ €Ag) + Zy 4 (— py + €'Ay) +mel ¢ = 0, (6)
since

Yo = @3 Yr = 6+PsP1 = 0301Pr-
The operator in this equation is just the transposed operator of (5). The
probability per unit volume of the electron being in any place is now given by

dY = dosx = Pyt ()

where oy denotes the sum of the products of each component of ¢ into the
corresponding component of oy, « being any function of the spin variables,
represented by a matrix with four rows and columns. [Note that quite
generally oy = yad.] Expression (7) is the time component of a 4-vector,
whose spacial components, namely,

— ¢yl — dYats — YU

must give 1/c times the probability per unit time of the electron crossing unit
area perpendicular to each of the three axes respectively.
‘We must now show that the divergence of this 4-vector vanishes, ¢.e., that
10 0
= 5 (#vo0) — Zr %, (¢vrx) = 0. O
Multiplying (5) by ¢ and (6) by y and subtracting, we get
¢ [vopo + Zavel o + % [FoPo + Zr T4l 6 =0,

¢[Yoc—g-t~2m a%f]x%—x[?o;—gt 25~ 195—0,

which gives

or

d d 134 3¢
95[?0@—2 raw:lx+patYox Efa Yrx = 0.

This gives immediately the conservation equation (8) as the v’s are here
constant matrices.
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§ 2. The Selection Principle.

In loc. cit. the quantum number j was introduced, which determines the
magnitude of the resultant angular momentum for an electron moving in a
central field of force. j can take both positive and negative integral values.
Again, the magnetic quantum number % = M,/h, say, that determines the
component of the total angular momentum in some specified direction, was
shown to take half odd integral values from — |j| 4+ % to |j| — 4. The state
J =0 is thus excluded, and the weight of any state j is 2| j|. The equation
obtained to determine the energy levels, 7.c., equation (25) or (26), involves j
only through the combination j (j + 1) except in the last term, which repre-
sents the spin correction. Thus two values of j which give the same value for
J (5 + 1) form a spin doublet, so that j =" and j = —(j’ + 1) form a spin
doublet when j* > 0. The connection between j-values and the usual notation
for alkali spectra is therefore given by the following scheme :—

2 -3 3 —4
S P D r

There is no azimuthal quantum number % in the present theory, an orbit for
an electron in an atom being defined by three quantum numbers n, j, « only.
One might on this account expect the selection rules, the relative intensities of
the lines of a multiplet, etc., in the usual derivation of which % plays an impor-
tant part, to be different in the present theory, but it will be found that they
do just happen to be the same.

We shall first determine the selection rule for j. We use the following two
theorems :— v

(i) If a dynamical variable X anticommutes with 7, its matrix elements all
refer to transitions of the type j -~ — j.

(i) If a dynamical variable Y satisfies

LLY, sk, gh] = — Y, ) (9)

its matrix elements all refer to transitions of the type j - 5 4 1.
To prove (i) we observe that the condition jX 4 X4 = 0 gives

7XGIN+ XG5 =0
(" +51 - X' 5" =0.
Hence X (5'5”) = 0 unless j” = — .

or
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A proof of (ii) involving angle variables has been given in a previous paper.*
A simple proof analogous to the foregoing proof of (i) is as follows. Equation

(9) gives
YP—-2%Yj+/Y =Y

Y702 =2 .Y () 5+ Y G =Y ("5
Hence Y (5" 7”) = 0 except when
2 =1,
=g £
We shall now evaluate [ [@3, j&l, jh]. The definition of j is
jh = p3{( =, m) + R}

or

%.6., when

Hence
[#3, jh] = o3 {0y [#3, my] + 04[5, Mol }
= p3 (01 %3 — 03%y), (10)
80 that
[ [#5, b1, jh] = [0, @y — 04wy, (&, m)].
Now

ik [oy, (&0, m)] = oy (&, m) — (o, m) 6y = 2 (czMmy — Gy
or
h [0y, (&, m)] = o3my — ogms,
and similarly
%‘h [62, ( d‘, m)] = GI'WIz3 -_ Gsmlo
Hence
34 [ [#3, ghl, jh] = (65my — ogim3) Ty + 3h 61 (0% — 61%)
— (oymg — agmy) B — 3h 65 (0505 — Ogly)
= o3 (m, X) —mg(, X) +%h{"_63(°7 x) —wa}
= —M;(=, x) — $has,
80 that _ _ v
[ [z, g, h] = —2u (@, X) — 5.

Thus %, does not quite satisfy the condition that Y satisfies in (9), owing to
the extra term — 2u (&, x) This extra term, however, anticommutes with 7.
If we now form the expression z; — cu (&, X), where ¢ is some quantity that
commutes with j, we can choose ¢ so as to make this expression satisfy com-
pletely the condition that Y satisfies in (9). We have, in fact,

[[zq —cu (@, x), k], jhl = — 2u (<, X) — 3+ cu. 452 (o, Xx)

= —{z;—cu (o, x)}

* ¢Roy. Soc. Proc.,” A, vol. 111, p. 281 (1926), § 3.
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if ¢ is chosen such that
— 2 4 44% = ¢,

o=1/2(s2—}).

Hence 2, can be expressed as the sum of two terms, namely,

z.e., if

and ms—"""“‘?i_(cs X),

2(5°—1)

of which the first anticommutes with j, and therefore contains only matrix
elements referring to transitions of the type j - — j, while the second satisfies
the condition that Y satisfies in (9), and therefore contains only matrix elements
referring to transitions of the type j—> j4-1. A similar result holds for =,
and x,. Hence the selection rule for j is

7Y

j>—j or  jogxl

Thus from states with j = 2 transitions can take place to states with j =1,
— 2 or 3. Comparing this selection rule with the above scheme connecting
j-values with the S, P, D notation, we see that it is exactly equivalent to the
two selection rules for j and % of the usual theory, and is therefore in agreement
with experiment.

§ 3. The Relative Intensities of the Lines of a Multiplet.

The relative intensities of the various components into which a line is split
up in a weak magnetic field must be the same on the present theory as on
previous theories, as they depend only on the Vertauschungs relations con-
necting the co-ordinates x, with the components of total angular momentum
M,, which are taken over unchanged into the present theory. It will therefore
be sufficient, for determining the relative intensities of the lines of a multiplet,
to consider only one Zeeman component of each line, say, the component for
which Au = 0, i.e., the component that comes from .

We shall determine the matrix elements of z;, when expressed as a matrix
in a scheme in which 7, §, w and pg are diagonal. x, is diagonal in (z.e., commutes
with) all of these variables except j. The part of », referring to transitiong
4§ —>— 5 we found to be

EC—
22— ¥

using the ¢ introduced in loc. cit. § 6. <p, anticommutes with g, so that it can

(c',X)= (11)

u
G-


http://rspa.royalsocietypublishing.org/

PROCEEDINGS THE ROYAL

SOCIETY

OF

'ROCEEDINGS THE ROYAL

SOCIETY

OF

Downloaded from rspa.royalsocietypublishing.org on 23 March 2009

358 P. A. M. Dirac.

contain only matrix elements of the type ep,(j, —5), and from the condition
(ep4)? = 1 we must have

lepy (4, — ) | = 1.
Hence

|25 (j, — J)| = -5(7-“-‘:-) rlepy (4, — J)| = %L_“—S . (12)

Again, we have from (10)

{ws — ilws, jhI} {ws +ilwy, 1} = {25 — tps(o1@s — 6401} {5 +- ipa(o1@, — o))}

= @g? + (0% — 05%))* = 1%,

{5+ Vg — @5} s (5 +1) — jog} = o
If we equate the (j, j) matrix elements of each side of this equation, we get on
the left-hand side the sum of three terms, namely, the (j, — j) matrix element
of the first { } bracket times the (—j, j) element of the second, the (5, 5 + 1)
element of the first times the (j 4 1, j) element of the second, and the (4,7 — 1)
element of the first times the (j — 1, j) element of the second. The second of
these three terms vanishes, leaving

(@ + Plag(, — )12 + 4lag(j — 1)1 =2

which gives

Hence
‘563(3, .7 )\ 4:T { ('7 . %:)2} -'L,r (j - %)2 . ( )
Writing — 7 for j, we get
. I N
@5 (— g, —j — D]z = 42U +uij%~(]%)2 utd) (14)

The three matrix elements of z; given in (12), (13) and (14) are associated
with the three components of the multiplet formed by the combination of two
doublets. The ratios of these matrix elements will, to a first approximation,
remain unchanged when one makes a transformation from the matrix scheme
in which 7, 7, u, p, are diagonal to a scheme in which the Hamiltonian is diagonal,
and will therefore give the relative intensities of the Zeeman components
Aw = 0 of the lines in a combination doublet. These ratios are in agreement
with those of previous theories based on the spinning electron model.

§ 4. The Zeeman Effect.

If there is a uniform magnetic field of intensity H in the direction of the x4
axis, we can take the magnetic potentials to be

Ay = — $Hz,, A,=4Hx, A;=0.
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The additional terms appearing in the Hamiltonian F will now be
AF = pi¢' (o, A) = —FHe'p; (0405 — 0amy).

From (10) it follows that pg (6125 — 04%;) OF (0525 — 04%,), like 24, contains
only matrix elements of the type (j, —j) or (5,4 4= 1). Now p, anticommutes
with 5, and therefore contains only matrix elements of the type (7, —j). Hence
AF contains only matrix elements of the type (7, j) or (4, —7 + 1).

In loc. cit., § 6, it was found [see equation (24)] that the Hamiltonian could
be expressed as

F = py+ V 4+ ep, + tepggh/r + pgme. (15)
It follows from (10) that (¢,2, — 0,2,;) anticommutes with ( &, x), and therefore
also with . Thus if we put
AF = thepgny,
so that
70 = $He/ch . €y (0335 — og2) [1,

7 commutes with e.  Further, v commutes with gg, 7 and p,, so that it commutes
with all the variables occurring in (15) exceptj. If we now express v as a matrix
in j, we shall have obtained an expression for AF in terms of the variables
occurring in (15). 'We have from (10) and (13)

[ea(osta = ) G — DI = loag.j — )2 =y UL U wmd),

and similarly

pa (ot —0y3) (5 + 1|2 = o j +1) |2 = o2 UEUED G —utd)
, . (J+3
We have seen that the matrix elements of ep,, all of which are of the type
(4, —J), must be of modulus unity. Hence

191G, == DI = (2 iy (7, —3) ¥lpalosea — oyer) (—j,—5 — 1)

=/qu>z(j+u+%)(j-—u+%)

\do; G+ b7
and similarly .(16)
g —(HeV(tu—9HG—u—1
| 0(—5+1) <4ch> (G—=32 .

Again, from (10) and (11)
ps (0123 — 038,) (— 3, 5) = — 2ij . @y (—j, §) = —-ﬁw.(spg (— 34 ),
go that

He

10,0 =55 A an
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If we now write down in full, as in loc. cit., the wave equation corresponding
to (15), and include the extra term AF, we shall have

[(F -+ AF) §1 = o+ V) da— by — (I - ) b+ magp =0,
[(F -+ AF) 1 = o+ V) by Bge o — (Lt ) B — moy =,

where ¥ is now an operator, operating on {, and g, that commutes with every-
thing except j. On eliminating ¢, this gives, corresponding to (25) of loc.

cit.,
2 2 m2n2
gﬁ%{‘%”;z 7 J(‘H D1y —nj—ja— 72| s
I S J —
P0+V+mcarbfr+r+m]% 0.

We can neglect the n*? term, which is proportional to the square of the field
strength, and also the yr term in the last bracket, which is of the order of
magnitude of field strength times spin correction. The only first order effect
of the field is the insertion of the terms n — j — ju in the first bracket.
This bracket may now be written as

2mE 2(E + mcz) \E
|.”? +02k2+ +h2

1
LUED o —aj—ja |, (8)
where E is the energy level, equal to pyc — mc>
If the field is weak compared with the doublet separation, we can obtain a
first approximation to the change in the energy levels by neglecting the non-
diagonal matrix elements of AF or of n. The extra terms v — %3 — jy in (18)
are now a constant instead of an operator, namely, the constant
. .. He wj
—(2i—1 ) = — e
| 25 —1)n(59) i+
from (17). The energy levels will be reduced by A%/2m times this constant, if
we neglect the fact that the characteristic E occurs in (18) in other places besides
the term 2mE/h?, which means neglecting the interaction of the magnetic field
with the relativity variation of mass with velocity. The increase in the energy
levels caused by the magnetic field is thus
He j

uh = wquh
2me g +3 Y


http://rspa.royalsocietypublishing.org/

PROCEEDINGS THE ROYAL

SOCIETY

OF

'ROCEEDINGS THE ROYAL

SOCIETY

OF

Downloaded from rspa.royalsocietypublishing.org on 23 March 2009

Quantum Theory of Electron. 361

where « is the Larmor frequency He/2me, and g, the Landé splitting factor,
has the value

g =73lG+3).
For the succession of j-values, —1, 1, —2, 2, —3 ... g has the values, 2, £, &,
4, ¢..., in agreement with Landé’s formula for alkali spectra.

We now take the case of a magnetic field that is strong compared with the
doublet separation, but weak compared with the separations of terms of different
series. This requires that the matrix elements of v of the type v (j, —j —1)
with 5 > 0 shall be taken into account, although those of the type (7, —j + 1)
can still be neglected. The reduction in the energy levels will now be approxi-
mately /?/2m times one or other of the characteristic values of the extra terms
7 —nJ — fnin (18). These characteristic values are the roots £ of the equation

n—23—mm 5 —& n—n3—g) (5 —3—1) = 0.
M=—ng—g)(—=3—L3 O—nj—s)(—j—1,—5—1)—¢&

—@i—=D.n()—E8 M@0, —5—1 ! v
(=5 —L7J) @j+3) . n(—j—1L —j—1)—E|=0.
This gives, with the help of (16) and (17 )

. w | u(j41) u2.7(1+1) Ut —w |
el e G - rama il

which reduces to

or

22 2£+<H6\\ (uz_l)_()

Hence
H
==}
The increase in the energy levels due to the magnetic field is therefore
__ h?* He 1) —
=l e o,

in agreement with the previous spinning electron theory of the Paschen-Back
effect.

One might expect that with still stronger magnetic fields the matrix elements
(4, —7 -+ 1) of m would come into play, and would cause interference between
the Zeeman patterns of terms whose quantum numbers % in the usual notation
differ by 2. The matrix elements (j, — j -+ 1) of y — %§ — ju, however, vanish
for arbitrary ), so that no effect of this nature occurs.
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