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Introduction. If the geometry of nature is Riemannian and the field equa- 
tions of this geometry are controlled by a scale-invariant action principle, 
there are four a priori possible and algebraically independent invariants which 
may enter in the integrand of the action principle. This abundance of invari- 
ants hampers the mathematical development and the logical appeal of the 
theory. The present paper shows that two of these invariants are inactive 
in the formation of field equations and thus may be omitted. Only the two 
invariants 

I, = Ra,6Ra# and 12 =R2 

remain effective which are formed with the help of the contracted curvature 
tensor Rik alone, while the complete curvature tensor Ra,, drops out from the 
action principle. 

1. In the attempt to find the fundamental geometrical laws of nature, the 
general possibilities can be greatly reduced by a small number of reasonable a 
priori assumptions: 
a) The geometry of nature shall be of the Riemannian type. 
b) This geometry shall be characterized by field equations for the metrical 
tensor. 
c) In view of the universal appearance of the principle of least action in all 
branches of physics: the field equations shall be deducible from an action 
principle. 
d) The existence of an action principle reduces the problem of geometry to the 
determination of one fundamental invariant I, viz. the integrand of the action 
principle: 

(1.1) B f Idr = 0, 

(dr = four-dimensional volume element) that controls the field equations of 
geometry. This fundamental invariant has to be composed out of the funda- 
mental quantities of Riemannian geometry and these are, in addition to the 
giAk, the components of the curvature tensor Rag,, called the Riemann-Chris- 
toffel tensor. It is feasible to assume that the fundamental invariant I shall 
be merely an algebraic function of the components of the curvature tensor, not 
involving any differentiation. As far as the form of this function is concerned, 
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the principle of "scale-independence" may be assumed: the value of the action- 
integral that has to be minimized should not depend on the arbitrary units 
employed in measuring the lengths of the space-time manifold. Owing to this 
principle, the invariant I has to be a quadratic function of the curvature com- 
ponents RO.tsp.' 

2. The conditions a), b), c), and d) permit one to restrict to a large degree, 
in a purely logical fashion, the laws of geometry presumably realized in the 
physical universe. In a number of papers2 the author investigated the general 
nature of field equations which are derived from an action principle with a quad- 
ratic invariant. He has also applied the Hamiltonian method of doubling the 
number of independent variables of the given action principle, treating the gik 
and the Rik as two independent sets of variables and considering the field equa- 
tions, in generalization of Einstein's gravitational equations, as a mutual inter- 
action of matter tensor and metrical tensor.3 There are indications in this 
theory for the appearance of the vector potential and thus for the possibility of 
explaining the electromagnetic phenomena. But the mathematical difficulty 
of obtaining "regular solutions" of the field equations, to be correlated to the 
physical behavior of single particles, is still a serious objection against the plausi- 
bility of these considerations.4 

There is, however, an even more serious obstacle that has handicapped the 

1 As it is well known, H. Weyl has developed an ingenious theory (see Ann d. Physik 
59, 101, (1919); W. Pauli: Relativitdts-theorie (Teubner, 1921), p. 759), which generalizes 
the Riemannian basis of geometry and builds up geometry in a "purely infinitesimal" 
fashion. In this geometry the ordinary principle of invariance is completed by the prin- 
ciple of "gauge-invariance," which requires invariance with respect to the substitution: 

(1.2) #i = Xgik 

where X is an arbitrary function of the coordinates. If we do not forsake the basis of Rie- 
mannian geometry, which postulates the existence of an infinitesimal and transportable 
calibrated yard-stick, the principle of gauge-invariance has still its logical significance in a 
limited sense, viz. for constant X. The substitution (1.2) with constant X has the significance 
of changing the scale of calibration of the infinitesimal yard-stick. Since this scale may be 
chosen arbitrarily, the factor X is undetermined. In general, an arbitrary invariant of 
Riemannian geometry will be a "dimensioned" quantity, i.e. it will depend on the value 
of the scale-constant X. It is feasible to assume that the fundamental integral, which 
has to be minimized according to the action principle, shall have the "dimension zero," i.e. 
it shall not depend on the arbitrary scale-factor we employ in measuring lengths of the 
space-time manifold. Otherwise any arbitrary small or large value can be assigned to the 
fundamental integral by merely changing the unit of the length-except if that value 
happens to be zero. 

2 Phys. Rev. 39, 716 (1932); Zeits. f. Physik 73, 147 (1931) and 75, 63 (1932). 
3 Zeits. f. Physik. 96, 76 (1935). 
4 Some recent advances in the field of approximation methods led to a new approach 

of the problem and seem to indicate that the required "proper solutions" are actually 
present. The author hopes to report about these results in the near future. 
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progress along these lines considerably. The investigations of the author are 
based on a linear combination of the two invariants 

(2.1) = Rar em 

and 

(2.2) I2 = R2. 

These are, however, not the only invariants satisfying the condition of gauge- 
invariance. Also the following invariant satisfies all conditions: 

(2.3) I3 = Ra,,,,R`0A. 

This invariant involves the complete curvature tensor of 4th order and seems 
mathematically of a much more cumbersome nature than the invariants (2.1) 
and (2.2). This, however, is no inherent reason for excluding it from the par- 
ticipation in the action integral.5 

Even more discouraging is the fact that still more invariants of quadratic 
nature can be constructed if we make use of the completely anti-symmetric 
"determinant tensor" 

(2.4) V60"' J.a", 

where the symbol en"O has the value +1 for any even permutation of the four 
indices a, #, IA, v and the value -1 for any odd permutation, provided that no 
two indices are equal. In the latter case e"O)Lu vanishes. 

With the help of the tensor (2.4) we can form the "simply dual" and the 
"doubly dual" curvature tensors: 

(2.5) Rik =Rika 

and 

(2.6) R = Ra0vcik6um 

which give rise to two more invariants: 

(2.7) K, = Rapyv R I 

and 
** 

(2.8) K2 = as 

5 The alternative combination Ra~,RAw, mentioned by Weyl (see reference 1, p. 133), 
is reducible to (2.3) owing to the algebraic identity: 

(2.9) Ra, + Ragpp + Rapsp = 0 

One can prove that similarly also in case of the two invariants (2.7) and (2.8), in consequence 
of the same identity, the transposition of indices does not produce new invariants. 
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Hence there are altogether 5 apparently independent invariants which satisfy 
all our conditions and we may choose an arbitrary linear combination of them, 
with some numerical factors, as our action integrand I. This abundance of 
equivalent elements, among which no a priori choice seems to be possible, im- 
pairs greatly the logical persuasiveness of the theory. 

The present investigation shows that this surplus of invariants is only appar- 
ent. We shall see that the invariants K1 and K2 do not contribute any terms to the 
field equations since their variation reduces to a mere boundary term. More- 
over, we shall prove that the invariant Is, as far as field equations are concerned, 
is reducible to the two invariants I, and I2 . These invariants were chosen previ- 
ously owing to their property to depend only on the contracted curvature tensor 
Rik of Einstein and not on the general Riemannian tensor RaP, of 4th order. 
The present study yields the deeper evidence for the fundamental nature of 
Einstein's curvature tensor Rik, proving that those invariants which involve 
the complete curvature tensor of the 4th order are reducible, as far as the form- 
ing of field equations is concerned, to the two simpler invariants I, and I2 which 
are constructed with the help of the contracted tensor Rik alone. 

3. The following formulae belong to the common arsenal of tensor-calculus 
and may be found more or less completely in almost any of the common text- 
books on tensor-calculus or relativity. They are listed here for later references. 
The notations are self-explanatory and agree with the standard methods of 
writing tensor-equations. In lack of a universally accepted practical symbol 
for the process of "covariant differentiation" the ordinary symbol of partial 
differentiation: a/aXk shall be adopted for this purpose, in view of the fact that 
the ordinary differentiation will not enter in our present considerations. In 
accordance with the "sum-convention" of Einstein, equal indices shall auto- 
matically mean summation indices. 

a) The Gaussian integral transformation: 

(3.1) f a dt = surface integral. 

(3.2) b) j ap ... 
" Bat `'dr = surface integral - AjA,... ., aB. dr. 

c) Bianchi's identity for the Riemann-Christoffel tensor: 

3Razp + Map + aRap, - 

( ) ~~~~~axp ax.. ax, 

d) As it is well known, the quantities ra do not form the components of a 
tensor of third order. But the variation of the rlP, produced by an infinitesimal 
variation of the gik, is actually a genuine tensor of third rank, covariant and 
symmetric in i, ka, contravariant in a: 

(3.4) srPa = akk 
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e) The variation of the curvature tensor R', can be expressed by means of the 
tensor -y ik in the following form: 

(3.5) aR = 8xs 
A a8x 

f) The "dual transposition" of an anti-symmetric pair of indices may be 
obtained from the following table: 

12 34 

(3.6) 13 42 

14 23. 

The table reads in both directions and contains thus all possible combinations 
of two different indices. Exchange of the sequence of an index-pair means the 
corresponding exchange in the correlated pair. 

'The process of "dual transposition" of an anti-symmetric pair of indices 
shall be denoted by underlining these indices. Thus e.g. Ralp2 shall mean 
Ra34 , etc. With this notation we may write: 

* 1 
(3.7) R c, - Ra#p. 

9 

4. We deal at first with the two invariants K1 and K2 and show that the 
terms, obtained from them by variation of the ik, all vanish identically. This 
is in the case of K1 due to Bianchi's differential identity, while in the case of K2 

we have to add the algebraic symmetry-properties of the Riemann-Christoffel 
tensor, together with the fact that the number of variables is 4. 

The Bianchi-identity (3.3) may be written for the special case of 4 dimensions 
in the following form: 

(4.1) aRzyap 
ha = o. 

Due to this relation we get for the two dual tensors (2.5) and (2.6): 

(4.2) aRikm 
- 

** 
eXa 

aRikm a- (4.3) axa- 0 

We now consider the action integral 

(4.4) A = f Ra~sR afdr 
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Since the volume-element dr has the significance 

(4.5) dr= =f/gdx1 *- dx4, 
we may write (4.4), making use of (3.7), in the following form: 

(4.6) A = J o, Rapvdxj ... dx. 

Owing to the complete mutual symmetry of the two factors the variation of the 
second factor reproduces the result of the variation of the first factor. Thus it 
suffices to vary the first factor alone and multiply the result by 2. Applying 
the formula (3.5) for the variation of the curvature tensor and making use of the 
integral-transformation (3.2) we obtain: 

aA = 2 J' (ah _ ') Rapa& dx1 ... dx4 

(4.7) = 4f R, , dxj ... dx4 

= boundary term - 4 Ja? aRa eldr. 70'ax, 
The second term vanishes owing to (4.2). Thus 6A reduces to a boundary 
term and does not yield any terms toward the field equations. 

We now turn to the second invariant K2 and handle the variation problem in 
a similar manner. The action integral 

(4.8) A = jRaipRa~vdr 

may now be written as follows: 

A = f Ra0,Ra&i dx1 ... dx4 = RPp ,,wR4'& dxgdx4. (4.9) 

Again the variation of the first and the second factor yields the same, due to the 
symmetry of their mutual relation. The process (4, 7) again yields a pure 

* ** 
boundary term in view of the fact that not only Ram, but also Rap, satisfies 
the divergence equation (4.3). Hence only the variation of the third factor 
will contribute something to the field equations. Here no derivatives of the 
gik enter any more, and thus the field equations deduced from the invariant K2 
have the remarkable property of being not higher than second order in the gik . 
We will prove, however, that these terms all vanish identically, owing to the 
algebraic symmetry-properties of the tensor Rabt,. 

Performing the variation of the gik in the third factor, we obtain the following 
symmetric tensor of second order: 

** = a*t* + a -2 (4.10) Sik = Riao Rk + Rka0_TRia` - i K2 giAk. 
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Now a tensor-equation may be proved in any reference-system. Thus we may 
introduce a local reference-system in which the gik have the normal values bik. 

Moreover, by a suitable rotation of our reference-system, the symmetric tensor 
Sik may be transformed into a purely diagonal form. Hence it suffices to show 
that all the diagonal terms of the expression (4.10) vanish. This guarantees 
the vanishing of the complete tensor. 

Now in our local reference system co-variant and contra-variant components 
are equal and the diagonal terms of Sik may be written as follows: 

** 

(4.11) 2 Sf, = Rio Ria,- 3 K2 = RiarR X ahoy - 44K2 

The index i is here exceptionally no sum-index, but a fixed index which assumes 
successively the values 1, 2, 3, 4, while a, i3, y are, as usual, sum-indices. 

We examine particularly the expression 

pi = RiaP.yRjqcxz 

the second term of (4.11) being the same for all the four Sij. Let us evaluate 
the contributions of the different curvature-components of pi separately. We 
may have an index-combination of the type R1212 with two equal pairs of indices. 
This component combines with R3434 so that the effect of these two components 
has to be considered simultaneously. Now in the first row (i = 1) the product 
(12, 12). (34, 34) enters6, omitting for a moment the letter R and denoting the 
various components of R merely by the corresponding index-combinations. 
In the second row (i = 2) the same product enters, due to the combination 
(21, 21). (43, 43). The same happens in the third and fourth rows, with changed 
sequence of the factors. Thus all the four pi are equal. 

We prove the same for a combination of the type (12, 13); (only two equal 
indices). Here the dual partner is (34, 42). In the first row we get two terms 
since 1 may combine with either 2 or 3: 

(12, 13). (34, 42) + (13, 12). (42, 34) = 2. (12, 13). (34, 42). 

In the second row 2 may combine with either 1 or 4 and we obtain: 

(21, 13).(43, 42) + (24, 34).(12, 31) = 2 (12, 13).(34, 42). 

The result for the third and fourth row is similar. Again all the four pi are 
the same. 

Finally we consider a combination of the type (12, 34), where all the four 
indices are different. Here the square of (12, 34) enters into the first row, but 
the same happens in all the other rows. The contributions to all four rows 
are the same. 

Hence we have proved for any possible index-combinations that all the four pi 

6 Actually also (12, 21). (34, 43) should be considered which only duplicates the result. 
We consistently omit here and in the next similar instances the interchange of the second 
pair of indices. 
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come out as equal and then the same holds, due to (4.11), for the four Si. 
We may put 

(4.13) Sii= C. 

But the expression (4.10) shows directly that the scalar 

(4.14) Sa = 0. 

This means for our reference system: 

(4.15) 4C = 0. 

We thus arrive at the conclusion that all the diagonal components of the tensor 
Sik vanish which leads to the complete vanishing of the tensor Sa . 

The result of this paragraph is that neither the invariant K1 nor the invariant K2 
is able to contribute any terms to the field-equations. 

** 
5. The tensor Rave is not independent of the original tensor Rak but can be 

reduced to it without referring to the anti-symmetric tensor ca"'. Let us form 
the difference 

** 

(5.1) Ra$;;; - Ra~MR 

This tensor has only 9 independent components and can be produced explicitly 
with the help of the contracted tensor Rik . We can prove by direct inspection 
in a local reference-system gik = ik the validity of the following tensor relation: 

** 

(5.2) RadsAV - caov= B agsv - B a, + B#vat - BAgav 

where we have put 

(5.3) Bik = - i Rgjik- 

Hence 
** 

(5.4) Rao, = Rav- Ba;jg@EA + Bavg# - Bovga + Bongav. 

Multiplying by R'OMV we get the following linear relation between the invariants 
I,, I2, I3 and K2: 

(5.5) K2 = I3 - 4RaABcA = I3 - 4I, + I2. 

The fact that the field equations deduced from K2 vanish identically may now 
be expressed in the following manner: The field equations deduced from the action 
integral 

(5.6) f I3dr 

are identical with the field-equations deduced from the action-integral 

(5.7) Jf (4I, - I2)dr. 
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6. Conclusion. If we want to investigate the complete group of Riemannian 
geometries deducible from an action principle with an integrand which is quad- 
ratic in the curvature components and thus scale-invariant, we have to start 
out with a general expression of the following form: 

(6.1) 6 f (Il + aI2 + #I3 + 7Kj + eK2)dr = 0 

with the five invariants Il, I2 , I3, K1, K2 and four numerical constants a, A, 
Ay, e. Due to a linear relation between these five invariants I3 may be eliminated 
and thus the action integral reduced to but four independent invariants. It has 
been shown that for any variations between definite limits we get identically: 

(6.2) 6 f Kidr = 0, 

(6.3) 6 Jf K2dr = 0, 

so that the action principle (6.1) reduces in fact to the simple form 

(6.4) 6 Jf (I, + aI2)dr = 0. 

The two remaining invariants 

(6.5) I, = Ra6Ra', I2 = R2 

are characterized by the property that they are formed exclusively by means 
of the contracted curvature tensor Rik while the general Riemann-Christoffel 
tensor Rabid does not enter any more into the action-principle. Thus the diffi- 
culty of an abundance of invariants, coupled with each other by arbitrary numer- 
ical constants, is removed and the action integral reduced to a form in which 
but one unknown numerical constant remains. 

This result confirms in a very satisfactory manner the fundamental significance 
of the contracted curvature tensor of Einstein for the geometry of nature. It 
also confirms the logical reasonableness of the attempt to deduce the field 
equations of nature from a scale-invariant action principle. 

PURDUE UNIVERSITY, 
LAFAYETTE, IND. 
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