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Any Weyl-invariant relativistic theory that admits a Schwarzschild de-Sitter metric solution

equally well admits the Mannheim-Kazanas metric. This statement is shown explicitly via a com-
bined coordinate and Weyl transformation.

PACS numbers:

I. GENERATING THE MANNHEIM-KAZANAS FROM THE SCHWARZSCHILD DE-SITTER METRIC

We start off with the standard Schwarzschild de-Sitter metric. This metric is a well-known solution of both GR
and fourth-order Weyl gravity. In the latter case it is a special case (y = 0) of the Mannheim-Kazanas metric, which
by itself is a solution of fourth-order Weyl gravity. Extending the symmetry of GR to allow for Weyl invariance we
obtain a Weyl-invariant scalar-tensor theory described by an action Z = | (éRéz + ¢ u0H + L)/ —gdiz.

In the ' frame the infinitesimal interval that describes the Schwarzschild de-Sitter metric reads

23 dr'’?
r 12 A2

ds? =—(1— + A )dn® + + r'2(d8? + sin® 6dp?) (1)

where 3 & A have their usual meaning. Again, this metric is a solution of both fourth-order Weyl gravity and the
scalar-tensor extension of GR (in case that ¢ is a constant the theory reduces exactly to GR for which the Schwarzschild
de-Sitter metric is a solution). Since both theories are invariant under both general coordinate transformations, as
well as under Weyl transformations, we can generate new solutions by applying a combined coordinate and weyl
transformation. Specifically, we are seeking a spherically static solution of the form

ds® = —A(r)dn® + a +r2(df” + sin® 6d?) (2)
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in the, new, r-system. Rather than going through a tedious solution of the field equations we employ the symmetry
of the theory to explicitly derive A(r) from Eq. (1) and show that it is exactly the corresponding quantity found by
Mannheim & Kazanas (1989) from solving the fourth-order Bach equations within the Weyl gravity framework or by
solving the coupled scalar-tensor field equations of 7 = [(3R¢® + ¢ ,¢* + L,)/—gd*z. Eqs. (1) & (2) are related
via a conformal transformation ds® = Q2ds®. From the the angular, radial and time components of the metric we
obtain, respectively
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Using Eq. (3) to eliminate 2 from Egs. (4) & (5) and comparing between them we obtain that dr’ /r'? = dr/r? which
integrates to
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where C is an integration constant. Plugging this back in Eq. (5) we obtain
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APy =1-6C8 - I—B +(2C —68'C?)r + (C? - 28'C3 + A% Q)
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Comparison to the Mannheim-Kasanas solution [1989]
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where 3, v & k are integration constants immediately shows that setting —k = A’ + ﬁj—gr_g’)%, g =p81- é‘g—"i) &

C= Zl_—l@—i—) renders our metric solution, Eq. (7), equivalent to the Mannheim-Kazanas metric. Since both theories
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are Weyl-invariant all the fields, not only the metric, should be appropriately locally-rescaled, e.g. ¢ — Q-1¢,

§ = Q7% A, A, AP = QT2AM, ete.







