
Yuri Balashov and Vladimir Vizgin, eds., Einstein Studies in Russia.
Einstein Studies, Vol. 10. Boston, Basel, Birkhäuser, pp. 91–106.
© 2002 The Center for Einstein Studies. Printed in the United States.

Hermann Weyl and Large Numbers
in Relativistic Cosmology

Gennady Gorelik

1. Introduction

Since time immemorial philosophers, poets, and scientists have pondered
the relationship between the micro- and the mega-world. The relevant scale,
what counts as the micro- and the mega-, has always been determined by
the scientific knowledge of the time. Since Newton, the scales of the largest
and the smallest have extended by ten orders of magnitude in both
directions. Equally strikingly, the meanings of ‘micro’ and ‘mega’ have
changed in the historical development from the unification of celestial and
terrestrial mechanics, to the physical study of stars by means of spectral
analysis, to the micro-physical explanation of the baryon asymmetry of the
universe.

It was only in the late 1910s, however, that the first physical fact was
discovered that could provide a quantitative clue to the interconnection
between the micro- and mega-worlds. It was a famous mathematician,
Hermann Weyl, who made this discovery.

His discovery later gave rise to such different ideas as the hypothetical
variation of the gravitational constant and the anthropic principle. More
cautiously, it was referred to as “an unexplained empirical connection
between meta-galactic parameters and micro-physical constants” (Zel’ma-
nov 1962, p. 496).

Although this link between the micro- and mega-worlds is regarded as
an empirical fact, its recognition was intertwined with developments in
advanced theoretical physics. Before turning to the circumstances of the
discovery of this fact, let us look at its contemporary status, which clearly
points to its empirical nature.
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2. The Cosmological and Micro-physical Parameters

The universe as a whole is the largest physical object that can be described
by a limited number of parameters. The basic mega-parameters are the
average density of mass (or energy), !�10�31 g/cm3, and the Hubble
constant, H�2×10�18 s�1, which describes the rate of the expansion of the
universe by relating the speed of the recession of galaxies to the intergalac-
tic distance according to v = Hr. The gravitational constant G and the
velocity of light c can also be attributed to mega-physics.

The characteristic parameters of micro-physics are the mass of an
elementary particle m, the elementary charge e, the Planck constant �, and
the velocity of light c. The uncertainty of a few orders of magnitude in
“the” mass of a particle does not really matter in the present context. For
definiteness, we shall assume it to be the electron mass. Thus, mega-
physics is represented by the quantities H, !, G, and c, while micro-physics
is represented by m, e, �, and c. Let us also put aside the question of
whether one should use the coupling constant of the strong or weak
interaction in place of e: in the 1920s, no such question existed.

Only dimensionless quantities, the values of which are independent of
the units of measurement, can be regarded as being of genuine theoretical
interest. Among such quantities, constructed from the parameters

H, !, G, m, e, �, c          (1)

are three combinations whose values lie very close to the unusually large
number 1040. One of them is the ratio of the strengths of electromagnetic
and gravitational interactions

Q1 = e2/Gm2 = 4×1042 
� 1040.        (2a)

Two other combinations can be obtained by taking the ratio between the
distance and density scales characteristic of the micro- and macro-worlds:
between the so-called radius of the universe, R = c/H, and the classical
electron radius, re = e2/mc2, and also between ! and m/re

3:

Q2 = R/re = 3×1040 � 1040,        (2b)

Q3 = mre
3/! = 3×1040 � 1040.        (2c)

The fact that these independent dimensionless quantities, Q1, Q2, and
Q3, are all so close to the large number 1040,
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 Q1 � Q2 � Q3 � 1040 ,         (3)

is called the coincidence of large numbers. This coincidence turns out to
be a “purely” empirical fact that is not incorporated in any theory. (The
quotation marks here are intended to remind the reader that it is only our
enlightened age that permits us to regard such quantities as the universe’s
average density and the rate of its expansion as being empirical.)

Since the Hubble constant, H, appears in relations (2) and (3), one
might think that the coincidence of large numbers came to be known only
after 1929, when Hubble’s law was discovered. This is not true: The
coincidence came to the attention of physicists in the early 1920s and
Arthur Eddington was one of its most active proponents. To clarify these
circumstances, let us turn to the history of relativistic cosmology, with
which the history of “large numbers” is closely connected.

3. The First Steps of Relativistic Cosmology

Relativistic cosmology was born in Einstein’s 1917 paper, “Kosmologische
Betrachtungen zur allgemeinen Relativitätstheorie,” in which he suggested
the first cosmological model based on general relativity (GR). Einstein’s
universe was described by two parameters, the radius of curvature R and
the density of matter !. Einstein did not regard his model as a purely
theoretical construct. For him, its most essential features, such as
homogeneity, isotropy, constancy in time, and non-zero average density,
were experimental and observational facts. Evidently, he knew nothing
about the galactic structure of the universe (it was no more than a
hypothesis then), nor about Vesto Slipher’s discovery in 1913 of the
enormous velocities of some galaxies (referred to, at that time, as “spiral
nebulae”), which later developed into Hubble’s law. Einstein supported his
assumption about the static nature of the universe by referring to “the most
important fact that we draw from experience as to the distribution of matter
. . . that the relative velocities of the stars are very small as compared with
the velocity of light” (1917, p. 148, trans. by W. Perrett and G. B. Jeffery).
Einstein never specified which “experience” he had in mind. One thing is
clear: this fact was of signal importance to Einstein. He mentioned it seven
times in the eleven-page paper.

Einstein’s acceptance of the static nature and the non-zero density of
the universe forced him to generalize the field equations of GR by
introducing the cosmological constant �:
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         (4)Rik 	 ½gikR 
 �Tik 	 �gik ,

which led him to assume a closed spatial geometry and the relation

        (5)1/R2

 �!/2 
 � ,

connecting the quantities R and !.
Einstein himself never attempted to estimate R and ! on the basis of

astronomical data: “Whether, from the standpoint of present astronomical
knowledge, it [i.e., Einstein’s cosmological model] is tenable, will not be
here discussed” (1917, p. 152; trans. by W. Perrett and G. B. Jeffery).

Willem de Sitter was the first to do this, in the same year, 1917. In his
third (and last) paper in a series that discussed Einstein’s gravitation theory
and its astronomical consequences, he turned to the cosmological problem
(de Sitter 1917). Having described Einstein’s cosmological model, he
suggested another model known today as the de Sitter model, in which the
matter density is zero while space, depending on the sign of �, can be
either open or closed and the curvature radius is related to �:

        (6)3/R2

 � .

De Sitter concluded his paper with an estimate of R based on the astronomi-
cal data.

The Einstein model allowed two types of test: by deriving geometrical
consequences for the curvature (for example, for the behavior of light rays)
and by obtaining the density from equation (5). De Sitter’s model, on the
other hand, permitted only geometrical considerations to be used, as it
assumed ! = 0.

De Sitter relied on much more extensive astronomical data than the
single fact that the stars are at rest. He took into account the galactic
structure of the universe, the size and mass of our Galaxy, and even the
recently discovered shifts in the spectra of three galaxies (“spiral nebulae”).
He used Schwarzschild’s (1900) work, which compared astronomical data
with assumptions about spatial curvature. Based, of course, on pre-
relativistic considerations, Schwarzschild put a constraint on the curvature
radius from below. For example, he noted that the light from the other side
of the sun must be absorbed as it travels “around the world.” (In a
transparent, spatially-closed universe, any object can be observed in two
opposite directions).
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A constraint on the curvature radius from above was more interesting.
In Einstein’s cosmological model, this constraint is based on the estimate
of the average matter density in the universe. De Sitter used the available
data on the density of stars at the center of our galaxy and on its size (about
104 parsecs), and he took inter-galactic distances to be approximately equal
to our galaxy’s size. The result was

!  > 10�27 g/cm3,         (7)

and, according to (5), the curvature radius is constrained by

R < 1027 cm.         (8)

Assuming that space is closed and that the sun’s reverse side is invisible,
the estimate of R from below gave R > 4 × 1024 cm, while R > 1025 cm
follows from sufficiently small angular dimensions of the “spiral nebulae”
and the hypothesis that their linear size is of the same order as that of our
galaxy. Although de Sitter emphasized that these estimates were very
crude, he believed that their agreement is remarkable and could not be
expected a priori.

This is how the first quantitative cosmological parameters based on real
observational data appeared. They claimed to describe the universe as a
whole giving, for its radius

R � 1027 cm,         (9)

and for the average density

! � 10�27 g/cm3.                (10)

Notably, despite all the difference between Einstein’s model and present-
day cosmology (today, the concept of the “radius of the universe” does not
presuppose closed space), contemporary estimates of R and ! differ from
(9) and (10) only by a few orders of magnitude.

Thus, as early as in 1917, the coincidence of large numbers (2b) and
(2c) could have been noticed. But no theoretical framework was available
to account for it.
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4. An Empirical Fact Discovered by a Mathematician

Hermann Weyl made a step towards discovering a “coincidence” of large
numbers while working on his unified field theory (Weyl 1918). This takes
us from observational astronomy to theoretical physics, or even to “purely”
theoretical physics, as Weyl’s theory was never developed beyond the state
of a “draft theory,” a mathematical construct that could not be tested by
experiment. (This did not render it fruitless, for the notion of gauge
symmetry, a key ingredient of contemporary physics, was first suggested
by Weyl’s theory; see Vizgin 1994.)

The notion of spatial-temporal standards, or scales, served as the
starting point in Weyl’s theory. In Einstein’s general relativity, which Weyl
sought to generalize, the space-time metric

ds2

 gikdx i dx k

is brought into correspondence with experiment by means of definite
standards of length associated with solid bodies or light signals. This makes
it possible to compare the lengths of metric intervals measured at different
points of space-time.

Weyl suggested that, in accordance with the principle of locality, the
lengths should be strictly comparable only at individual space-time points.
This led him to a geometry that, while generalizing Riemannian geometry,
described the properties of space-time, not only by ten components of the
metric tensor gik(x), but also by four quantities Qi (x) that could play the role
of the vector potential of the electromagnetic field.

Besides arbitrary coordinates, Weyl’s theory also involved the so-called
gauge, or scale, transformation

g1ik 
 �gik , Q1i 
 Qi� 0i� ,

where �(x) is an arbitrary function of the space-time coordinates. This
transformation was interpreted as a change of scale or the measuring
standard (which, according to this theory, should be chosen at each point
of space-time), since ds12 = �ds2.

Invariance under scale transformations was thus the pivoting point of
Weyl’s theory. This led Weyl to field equations that cannot be transformed
into Einstein’s equations in the limit Qi (x) = 0 (the Lagrangian R�	g, which
leads to Einstein’s equations, is not scale invariant; therefore Weyl
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adopted, as his Lagrangian, the square of the curvature, Rj
i
klR

j
i
kl�	g). To

defend this feature of the theory, Weyl noted in 1918:

[I]t is highly improbable that Einstein’s equations for the gravitational field are
strictly valid. First and foremost, it is improbable because the gravitational
constant is out of place among other natural constants, so that the gravitational
radii of the charge and the mass of the electron have values of quite different
orders of magnitude than, for example, the radius of the electron itself (they
are smaller than the latter—the first by 1020 and the second by 1040). (Weyl
1918, p. 476)

Here Weyl repeats his own remark from an article written in 1917
entirely from the point of view of GR. Having found a solution for an
electrically charged point mass (also known as the Reisner–Nordström
solution), Weyl introduced the lengths rgm = Gm/c2 (gravitational radius of
mass m) and rge = e�	G/c2 (gravitational radius of the electric charge e).
Comparing these lengths with the “electron radius,” re = e2/mc2, he noted
that, for the electron, rge/re = 1020 and that this solution could hardly be
used to understand the physics of the atom, since the gravitational field’s
influence would be important, in the case of the electron, only at a distance
of the order rge � 10–33 cm (Weyl 1917, p. 145). In 1918, Weyl also
mentioned that “in the most general case, for a world with [the curvature
scalar] R g 0, one can obtain, by appropriately choosing an arbitrary unit,
R = const = ±1” (Weyl 1918, p. 475).

It seems that further elaboration of these findings led Weyl, for the first
time, to turn to the coincidence of large numbers in his article of 1919.

The lack of a physical interpretation of the procedure of “choosing an
arbitrary unit of length” was, from the physical point of view, the Achilles’
heel of Weyl’s theory. (It was precisely this point that prompted Einstein’s
critical comment, which, however, failed to convince Weyl.) Physics had
always attached importance to the notion of measurement standards, and
the standards and scales employed had invariably been presupposed to be
as stable as possible. Physics had not recognized arbitrary spatio-temporal
changes of scale. True, there was a certain arbitrariness in choosing the
standards, but it had a discrete, or global, character. Having introduced an
arbitrariness in calibrating the scales and being convinced that this
represented a true realization of the principle of locality (as distinct from
Einstein’s approach, which was “half-hearted and inconsistent”), Weyl had
to eliminate this arbitrariness one way or the other, so that his theory could
be experimentally tested.



98     Gennady Gorelik

Weyl failed to find a convincing solution to this problem, but in his
search for it he stumbled upon the values of length that could be regarded
as fundamental characteristic scales. In 1918, he returned to comparing the
quantities rge, rgm, and re, his “official” goal being to demonstrate that
Einstein’s theory of gravitation could not serve as the basis of atomic
physics.

In his 1919 paper, Weyl suggested a new variant of a unified theory
that generalized GR and was based on a geometry that he introduced (i.e.,
the Weyl geometry). In this new theory, the gravitational Lagrangian
remained the square of the curvature. The Maxwellian part of it, however,
was no longer emerging in a natural way but was added “by hand.”
Through artful manipulations, Weyl managed to bring this Lagrangian into
a quasi-Einsteinian form. This led him to a variational principle that
included the Einsteinian component (with the cosmological term), the
Maxwellian component, and a non-Maxwellian component, the square of
the vector potential QiQ

i (“the simplest expression found in the Mie theory”
(Weyl 1919, p. 122), a theory that claimed to provide a unified field
description of the electron and the electromagnetic field).

This “spoiled” both the Maxwellian and Einsteinian equations in the
new version of the theory. However, according to Weyl, there was no
contradiction with experiments (having to do, in the first place, with
electromagnetism), since the non-Maxwellian term entered the equations
with a very small factor of the order 1/R2, where R is the radius of the
universe. (It seems that Weyl assumed a connection between the value of
the cosmological constant and the radius of the universe, � � 1/R2, figuring
in Einstein’s cosmological model.) By following this path, Weyl arrived at
a unit of charge, the gravitational radius of which, G½e/c2, has the same
order of magnitude as the radius of the universe. Noting that, in his work,
the unit of electricity and the unit of action both have “cosmic values,”
Weyl emphasized: “The ‘cosmological’ term that Einstein first added to his
theory is a natural consequence of our original principles” (Weyl 1919, p.
124, italic in the original).

In this way, Weyl clearly demonstrated, in 1919, his cosmological
tendency, which had been absent in his previous works, and supplemented
the microscopic quantities re, rge, and rgm with a megascopic quantity, the
radius of the universe R. It is in this paper, in discussing the “problem of
matter,” that Weyl, probably for the first time, pointed to

the fact that, for the electron, there are dimensionless numbers the order of
magnitude of which differs from unity by a great degree. Such is the relation
between the radius of an electron and the gravitational radius of its mass,
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which is equal to a magnitude of the 1040 order. The ratio of the electron radius
to the radius of the universe may be of the same order. (Weyl 1919, p. 129)

What he has in mind here is the relation

                                 (11)
re

rgm




e2/mc2

Gm/c2



e2

Gm2
�

R
re

,

that is, the “coincidence of large numbers.” Weyl’s essay does not mention
any specific numerical value for R, nor is there any reference to works that
mention it. But Equation (11) suggests that Weyl adopted de Sitter’s
estimation R � 1027 cm. In 1923, in the same context, Weyl put the radius
of the universe at about 109 light years (� 1027cm) (Weyl 1923, p. 323).

It is hard to tell if it was actually Weyl who, in that article (Weyl 1919),
discovered, for the first time, the “coincidence of large numbers.” The
apropos tone of his remark suggests that this fact could already have been
known to Weyl and was referred to as something curious. In any case, this
fact could not originate before de Sitter made his astronomical estimates of
R in 1917.

Weyl’s 1919 paper may produce an impression that relation (11)
follows from his theory. However, neither at that time, nor later, did his
theory reach the stage at which it could be compared with observational
data. Relation (11) was just consistent with Weyl’s ideas. Indeed, some of
his claims seem dubious; for example, the specific value for the radius of
the universe R adopted in (11) was obtained by de Sitter in the framework
of Einstein’s cosmology and it was unclear whether this result could be
imported into Weyl’s theory.

Weyl’s transition from his original Lagrangian, which was quadratic in
the curvature and produced a field equation of the fourth order, to the
second-order equations and his observations regarding a possible relation-
ship between the electron and the universe are inferences that appear even
more precarious. From a mathematical point of view, Weyl’s manipulations
were never properly justified (see Bergmann 1942, Pauli 1958). The most
important unresolved problem was to effect the correspondence between
the new theory and Newtonian gravitation, and to explain how “half” of the
initial conditions (the second and third derivatives at time zero) in the
Newtonian limit could be ignored. This explains why Dirac, who turned to
Weyl’s geometry fifty years later, avoided this difficulty by introducing an
additional scalar field; he used it to construct a scale-invariant Lagrangian
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that was linear in the curvature and that led, consequently, to equations of
the second order (Dirac 1973).

Despite the circumstances mentioned above, Equation (11) reinforced
by Weyl’s ideas was perceived as suggesting a unified approach to both
micro-physics and cosmology. A. S. Eddington, the most enthusiastic
adherent of this approach, believed that the “coincidence of large numbers”
did follow from Weyl’s theory. In his Space, Time and Gravitation, the
introduction to which is dated May 1920, he described the relationship
between electricity and gravitation wholly in terms of Weyl’s unified
theory:

[Weyl’s] theory suggests a mode of attacking the problems of how the electric
charge of an electron is held together; at least it gives an explanation of why
the gravitational force is so extremely weak compared with the electric force.
It will be remembered that associated with the mass of the sun is a certain
length, called the gravitational radius, which is equal to 1.5 kilometers. In the
same way the gravitational mass or radius of an electron is 7 × 10–56 cms. Its
electrical properties are similarly associated with a length 2 × 10–13 cms.,
which is called the electrical radius. The latter is generally supposed to
correspond to the electron’s actual dimensions. The theory suggests that the
ratio of the gravitational to the electrical radius, 3 × 1042, ought to be of the
same order as the ratio of the latter to the radius of curvature of the world. This
would require the radius of space to be of the order 6 × 1029 cms., or 2 × 1011

parsecs, which though somewhat larger than the provisional estimates made
by de Sitter, is within the realm of possibility. (Eddington 1920, pp. 178–179)

Later, when it became clear that Weyl’s ideas failed to produce a viable
theory, Eddington turned to other theoretical constructs. Still, his central
motivation had always been the search for a unity of micro- and mega-
physics. Equation (11) frequently figured in his books and articles and was
probably the least speculative of his arguments.

The meaning of R in relationships such as (11) changed radically with
the emergence of Friedmann’s and Lemaître’s evolutionary models and
especially after Hubble’s discovery of the redshift law in 1929. Redshifts
were immediately interpreted as a result of the universe’s expansion.
Consequently, R (the radius of the universe) could no longer be firmly
associated with a closed cosmological model, although “aesthetic”
preferences for this model survived for a long time. The value of the
Hubble constant H obtained from observations determines the characteristic
cosmological distance R = c/H, although a precise geometrical meaning of
this quantity can only be specified within a particular cosmological model.
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The “coincidence of large numbers” retained its importance, since the
Hubble radius, R = c/H, proved to be close to the Einsteinian radius of the
universe estimated by de Sitter. But the meaning of R changed: it was now
a function of time R(t), not a constant of nature. This undermined the belief
in an underlying connection between the mega- and microscopic parame-
ters. As a result, the “coincidence of large numbers” became an empirical
relation and ceased to depend on purely theoretical speculations. At the
same time, it became even more of an enigma. Indeed, two large numbers
coincide, one of which, according to the theory, is constant (e2/Gm2), while
the other depends on time (R(t)/r)

Q1 = Q2(t).       (12)

Two totally different approaches were suggested for interpreting the
“coincidence of large numbers” understood in this way. The first, initiated
by Dirac (1937), attempted to find a new physical theory in which the value
of Q1 = e2/Gm2 would be dependent on time Q1 = Q1(t), so that the equality
Q1(t) = Q2(t) would always hold. Since Dirac associated the dependence of
Q1 on time with the gravitational constant, G = G(t), one would expect a
new gravitational theory to be closely connected with cosmology, as the
gravitational constant became bound up with the cosmological parameters
H and !. Although this project led to some further interesting physical
ideas, by itself, it failed to produce a viable physical theory.

The second interpretation of coincidence (12), which emerged two
decades after the first one, does not presuppose the variation of physical
constants with time. Relation (12) is regarded as an equation that deter-
mines a certain moment of time, or, more exactly, a certain epoch, namely
the present cosmological epoch. The manner of this determination
resurrects (in a new form) the anthropocentric approach to the universe and
leads to challenging questions.

5. New Anthropocentrism in Cosmology

The anthropocentric approach to the “coincidence of large numbers”
originated in two papers published by Robert Dicke in 1957 and 1961.
Dicke’s theoretical ideas were far from consistent. He expressed doubts
that GR had a reliable experimental basis (Dicke 1957a). He believed that
the equivalence principle was invalid for “weak interactions” (he used the
term to refer both to the gravitational force and to Fermi’s concept of weak
interaction). Dicke suggested, as a consequence of his approach, that the
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constants of these interactions depended on time and space. He tried to
formulate a new theory of gravitation (Dicke 1957b) that he regarded as a
manifestation of electromagnetism with variable permeability of the
vacuum.

Dicke thought that the “coincidence of large numbers” was sure
evidence that the gravitational constant changed with time. He offered, in
passing, his explanation for the large values of coinciding numbers. Being
complex physical structures, human observers could not have evolved
within the time characteristic of the atomic scale. The epoch of man should
be described by a time that is both large and random with respect to that
scale (see Dicke 1957a, p. 356). In discussing the variability of physical
constants, Dicke insisted that “the age of the Universe ‘today’ is not
fortuitous. It is biologically determined.” He argued that, if the fine-
structure constant had been much less or much larger than its contemporary
value, the stars (the luminosity of which is highly sensitive to the value of
this constant) would still have been, or would already have been, so cold
that human existence would have been impossible (Dicke 1957b, p. 375).

In 1961, Dicke put forward a more detailed anthropocentric explanation
of the “coincidence of large numbers”: Since the elements heavier than
hydrogen were indispensable to life (“to create physicists we need carbon”)
and were formed inside the stars, the epoch of humankind could be
determined by the life span of main-sequence stars. This life span could
approximately be expressed in terms of the physical constants

T � k
mp

m r
5/2

k
e2

�cr
3

k
Gm2

p

�c r
	1

k
�

mpc
2 r ,

which, with the accuracy of (e2/�c) (m/mp)
½ � 10–4, represents the coin-

cidence of large numbers (Dicke 1961).
Whereas the anthropic approach to the coincidence of large numbers

is regarded today as an alternative to the hypothesis of the variability of
physical constants, Dicke never separated these two ideas. Furthermore, at
the very same time (i.e., around 1961), he was working on the scalar-tensor
theory of gravitation in which the gravitational “constant” was a scalar
field.

It is tempting to trace the currently popular anthropocentrism in physics
and cosmology to Boltzmann’s fluctuation cosmological hypothesis. Back
in the 1930s, Matvei Bronstein and Lev Landau offered a distinctively
anthropic description (in order to refute it), according to which large
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cosmological fluctuations were a necessary prerequisite of the existence of
observers, that is, a sine qua non of human existence (see Gorelik and
Frenkel 1994, §5.5).

Despite all the arguments that endow the physical properties of the
universe with anthropocentric interpretations, the anthropic principle
belongs today to metaphysics (in the original sense of the term), rather than
to physics. The principle adds a genetic connection to the link between the
observer and the object of observation. If the object is the universe itself,
it should be possible for the observer to emerge within it; that is to say,
“our universe is what it is because we were able to appear in it.”

This should not be taken to mean that the anthropic principle has no
place in physics. It provides an independent reason to postulate a super-
universe consisting of numerous separate domains. Our universe, which
proved itself capable of creating human observers, is one of them (see, e.g.,
Okun 1991, 1996).

6. Conclusion. A Mathematician in Physics

Mathematician Hermann Weyl found himself a place in the history of
fundamental theoretical physics in the twentieth century. His interest in
physical problems, his concrete results, fruitful ideas, and outstanding
books on general relativity and quantum mechanics set him apart from the
mathematicians of his generation. One might say that, in this respect, he
inherited the role of Henri Poincaré.

The difference between mathematics and physics, despite their close
and mutually beneficial interaction, is indeed great. What Weyl wrote about
our knowledge of the physical world was a graphic illustration of a
mathematician’s view of such knowledge.

One of the earliest images of science’s omnipotence—“Give me a firm
point, and I will turn the world around”—invites one to view mathematics
as the lever and to saddle theoretical physics with the task of looking for
the Archimedean point. The search has to proceed in a realm that cannot,
in principle, be mathematized, the realm of physical reality. It demands
considerable physical intuition, possible only in those who have extensive
experience of this reality. A mathematician who spent his life creating
various levers will find physical reality—with its apparently chaotic
collection of phenomena, facts, properties, and its mathematical eclecti-
cism—to be rather alien. This impression persists even if the mathematician
is able to find the notion of a lever that can be used to “turn the world
around.”
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This alienation and resulting frustration can be easily perceived in a
dialogue of two apostles of relativism recounted by Weyl (1924). The ideas
of Mach discussed in the dialogue were instrumental in formulating the
general theory of relativity. So far, however, no one has managed to
transform Mach’s principle from a verbal into a mathematical form. Cases
in which an illuminating idea burns to the ashes are not infrequent in the
history of physics: the light from burning often helps one to make some
steps forward, which would otherwise have to be made in complete
darkness. In the history of mathematics, more often than not, it is fortuitous
and unnecessary parts of the original idea that are destroyed by the
cleansing fire; a mathematical structure of beauty comes out of it to take its
proper place.

Several years divide Weyl’s two papers, (1924) and (1931). In fact,
they belong to two different epochs in theoretical physics. In 1924, the hope
of creating a unified geometrical field theory ran high. It was stimulated by
Weyl’s own work, which resulted in the first such theory suggested in
1918. By the early 1930s, the unsuccessful program of unified theories had
withered under the impact of quantum theory. Nobody was more resolute
in proclaiming the end of the epoch than Weyl himself when, in 1931, he
called the project of unified theories “geometrical trinkets,” allowing the
community of physicists to choose a proper funeral rite. One can even
suspect Weyl of nursing a grudge against physics for its rejection of the
goal to which he had pointed, namely, the idea of locality, more consis-
tently than it was done in Einstein’s general relativity.

Cosmology was another significant element in Weyl’s papers of 1924
and 1931. Both give one a good sense of the highly speculative nature of
relativistic cosmology in the pre-Friedmann era. The earlier of the two
papers should be dated to this stage as well, since nobody, including
Einstein, paid any attention to Friedmann’s achievements. It is much more
amazing that, in 1931, Weyl still failed to notice a new stage in the
development of relativistic cosmology, after Lemaître had published his
works and Hubble had made his discovery, and when the expansion of the
universe had already become an observational fact. As a mathematician,
Weyl could afford to ignore developments in astrophysics. Yet, there was
a more profound reason for his neglect.

It was Weyl the mathematician who tried, in 1919, to connect his
unified theory with physical reality. He was the first to pay attention to the
empirical fact of the “coincidence of large numbers,” which he regarded as
providing a connection between cosmology and micro-physics. The manner
in which Weyl argued for this connection lacked mathematical (and even
physical) rigor; he was driven by his desire to implement the unification
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project. He abandoned the project, yet the result he obtained survived and
acquired a life of its own. The majestic idea about possible links between
cosmology and micro-physics fascinated Eddington and drew Dirac far
away from physics. No wonder that Weyl, the philosopher and mathemati-
cian who had given birth to this idea, was too much involved with it to pay
attention to a non-static cosmology that was not part of his unified picture
of the world.

Non-static cosmology is, in fact, absent from Weyl’s later book (Weyl
1949). This can hardly be explained by the empirically unsatisfactory state
of cosmology at that time (Hubble’s estimate of the age of the universe was
in conflict with geo- and astrophysical data). More likely than not, this
absence can be explained by Weyl’s general philosophical and mathe-
matical approach to the physical representation of the world. The coinci-
dence of large numbers, discredited by Eddington’s ambitious yet barren
constructs, received a totally different treatment in Weyl’s works. He
denied that gravitation was a fundamental property and tried to explain it
as a certain kind of statistical effect of a large number of particles in the
universe, in line with Mach’s principle. This attempt remains nothing more
than a fact of Weyl’s biography.

There is no need to regret this, however. Under more or less similar
circumstances, Boltzmann had the following to say (about his fluctuation
cosmology):

Certainly no one will think that this and similar [cosmological] speculations
are important discoveries. No one will agree with the ancient philosophers that
they are science’s ultimate aim. Yet, does one have the right to ridicule them
as totally devoid of any significance? Probably they are extending our
horizons, making our thinking more flexible, and contributing to our knowl-
edge of reality. (Boltzmann 1898, p. 90).
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