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Abstract. In the paper, a short review of the problem of finding the densest packing of n equal
circles in a square is made. There will be new lower bounds for this problem defined on the
basis of regular arrangements. Also, there will new upper bounds be established based on the
computation of the areas of circle and minimum gap between circles and between circles and sides
of the square. The paper also contains all the known exact values of optimal packings and the
corresponding minimal polynomials.
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1. Introduction

The general problem of finding the densest packing of n equal objects in a bounded
space is a classical one which arises in many scientific and engineering fields. For
the two-dimensional case, this problem has been studied for several different shapes
of the bounded space; e.g. packing n equal circles in a circle [7, 8, 9, 12, 15, 20,
28, 42, 43], or circles in an equilateral triangle [13, 26, 27, 29, 38] or circles in a
square where circles are non-overlapping and the radius of equal circles should be
maximized. In the paper all the discussions will only concern the packing circles in
a square problem.

The packing problem has a long history in the mathematical literature [3, 4, 5, 6],
but the packing circles in a square problem is 40 years old only. In 1960, Leo Moser
was the first to study it when he wrote the next conjecture [32]: eight points in or on
a unit square determine a distance < % sec 15°. This problem for up to nine circles
(n =2,...,9) was solved in 1965 [44, 46], although the first proof for n = 6 was
reported in 1970 [48] and for n = 7 in 1996 [34]. Between 1970 and 1990, at least
ten papers have reported solutions for n = 10 [11, 16, 17, 18, 30, 31, 41, 45, 47, 49],
but the optimal solution was given in 1990 [17]. R. Peikert et al. [40] proposed an
elimination procedure and found optimal results for n = 10, ... ,20. Until recently
the problem has been solved for n < 27 [35, 40] using computer-aided methods for
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optimality proofs [34, 40] and the n = 36 [19] case was proven by mathematical
tools. Optimality proofs of packings obtained manually (without using a computer)
exist up to 9 [25, 44, 46, 48] and for the n = 14 [51], 16 [50], 25 [52], and 36 [19]
cases. Albeit Schaer and Meir in [44] claimed that for n = 7 they had found the
optimality proof, but did not explain it further on, and until now it has not been
published. A more detailed history of the packing equal circles in a square problem
can be found in [53].

In addition to the above optimal solutions, there has been published good approx-
imations to the problem solution for n < 52 and n =54, 55, 56, 60, 61, 62, 72, and
78. These numerical results were obtained by using several different strategies; for
instance, using billiard simulation [14, 21, 22], minimization of the energy function
[33], standard BFGS quasi-Newton algorithm [40], nonlinear programming solver
(MINOS 5.3) [24] or the Cabri-Géometre software in [31]. Although it is not known
whether these solutions are optimal, in some cases these numerical results can help
to find better solutions (if any) when they are used as lower bounds of the optimal
(maximal) solutions. For instance, several strategies described in the packing lit-
erature, as that of R. Peikert et al. in [40], are based on the knowledge of a good
lower bound of the solution. In this sense, lower bounds are useful for the problem
solution.

The paper provides new results, lower and upper bounds on the radius of circles
for up to one hundred circles. The paper is organized as follows: in Section 2
four equivalent definitions of the packing n circles in a square problem as well as
notations and parameters used are given. Section 3 is devoted to set up several
proposals for defining upper and lower bounds on the radius for the packing n
circles in a unit square problem. Upper bounds are based on the computation of
the circle areas as well as on the minimum gap areas between circles and between
circles and the sides of the square. Our suggestion for lower bounds are based on
specific regular patterns to arrange n equal circles in a unit square. In Section 4,
for several specific values of n, theoretical solutions and exact results of the optimal
values of the problem at hand are given.

2. Definitions and notation

The packing circles in a square problem can be described by the following equivalent
problem settings:

1. Locate n points in a unit square, such that the minimum distance m,, between
any two points is maximal.

2. Find the value of the maximum circle radius, r,, such that n equal non-
overlapping circles can be placed in a unit square.

3. Give the smallest square of side s,,, which contains n equal and non-overlapping
circles where the radius of circles is 1.

4. Determine the smallest square of side o, that contains n points with mutual
distance of at least 1.
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From these statements it is easy to prove that for the defined parameters m.,, 7.,
sn and o, the following relations hold:

_ M2 o=l -1 (1)
© 2(my, + 1)’ " 1—9r,’ ") " my

Tn

The problem of maximizing the minimal pairwise distance of n points being in
a unit square (Problem 1) can be formulated as the following continuous global
optimization problem:

— : . )2 )2
pay) = | min /(i) + - )

max () (2)

z,y € [0,1]", n > 1 integer,

where x;,y; are the coordinates of the i-th point. The goal is not only to obtain the
maximum of the minimum distance between any two points (max u(z,y)), but also
to find the respective locations of the n points in the unit square (the coordinates
zi,yi; 1 <i <n).

Definition 1. Given an € > 0 (tolerance error), we say that two circles i,j
(Problem 1) located at (z;,y;) and (z;,y;) are in contact if:

\/(:L'i —2;)2+ (yi —y;)? <mp +e

Similarly to this, a circle 4 is in contact with one side of the square if z; < €,
yi<ex>2l—e€ory; >1—e

The exact mathematical definition for the contact of two circles is that m,, is equal
to /(i — x)% + (y; — y;)?, and also when a point is on the side of the square. We
have considered the above exact form of definition in the theoretical results as well
as in Definition 1 in numerical results [1], since usually a finite arithmetic is adapted
to computers. For the study we set e = 10719,

Definition 2. Let us suppose that there is a given solution of the problem (2).
We say that a circle is free if its center can be moved towards a positive distance
point without causing the others’ overlapping.

We can point out that when a packing contains one or more free circles, then the
solution is obviously not unique, moreover, the locations of the center of any free
circles form a non-empty interior and connected set. In the paper the number of
contacts will be denoted by ¢,, while the number of free circles by f,. In all the
figures a contact will be represented by a short line section and free circles will be
indicated by dark shading.
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Definition 3. The density d,, of a packing can be given by:

3. Lower and upper bounds of the maximized minimum distance
between n points in a unit square

An approximate solution of (2) can be used as a lower bound m!, of the optimal
solution m,,. Let us suppose that it is possible to determine a good value for the
upper bound m¥ of the packing problem, so an approximate solution m,, of (2) can
be considered a good solution of the packing problem if it is close enough to m.
On the other hand, it has been proved in [6] that the densest packing of circles in
the plane is a regular (hexagonal) arrangement (see Figure 1) and the density of this
packing is v/37/6 &~ 0.9068996821. In addition, it can also be proved that this value
can provide an upper bound for the solution of (2), although upper bound values
better than that can be proposed. A hexagonal pattern can give an asymptotic

formula for m,,, where m,, ~ , /ﬁ (3].

Figure 1. The arrangement of the densest packing in the plane.

It is also known that for several values of n, the optimal solutions of the packing
circles in a unit square problem are regular arrangements. Keeping these ideas, in
mind it is easy to guess that for problem (2), other regular arrangements may also
provide at least a good lower bound of the optimal solution. In the coming section
improved lower and upper bounds are discussed.

3.1.  Lower bounds of m,, by using patterns

THEOREM 1 Consider the packing circles in a unit square problem according to
Problem 1. The maximum of the minimal distance between n points in the unit
square my, is not smaller than

my, = max(Ly(n), L>(n), Lsa(n), Lsy(n), La(n), Ls ()
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with
Li(n) = ﬁ7
Lo(n) = !
’ WVint1]l—3+v2+3
1
bl = T 2 L
1
L = ’
Y e W
Ly(n) = m if n =k(k+ 1), and 0, otherwise,

k3 —2k2 7

T 1 1 1
Ls(n) = ‘/F T if n = [%l , p° < 3¢%, and ¢* < 3p”;

and 0, otherwise.

(Here [.] denotes the smallest integer not smaller than the argument)

Proof: The new lower bounds are based on the use of some patterns proposed in
[14, 23, 33], also, on our own new patterns and at the assumption that m, 11 < my,.
Thus m!,,, or any values of the m, 41 of (2) are also lower bounds of m,,. In this
way lower bounds for all the values of n (2 < n < 100) can be obtained. The
set of patterns we will take into account for defining lower bounds are (see them
illustrated in Figure 3):

PAT1 For n = k? (k > 2, k € IN, where IV is the set of nonnegative integers)
the packings have an obvious square grid pattern of k x k points [14], for which
the minimum distance between the points is Li(n) = 2. This lower bound

can be applied also for n values not conforming the equation n = k? with the

k = [\/n] substitution.

PAT2 Forn=k*—-1=(k—1)?>+2(k—1) (k> 2, k € IN) the pattern can be
considered as a square pattern such as PAT1 of (k — 1)? circles into which one
row and one column of shifted circles are inserted [14]. In this case Lo(n) =

1 = — %)) =
PR svav. L and k = [v/n + 1], because m,(k — 3 + 2 cos(15°)) = 1.

PAT3 Forn = k2 —2 = (k—1)242(k—2) + 1 the pattern is similar to PAT2, but
in this case there are two shifted columns and two shifted rows of fitting length
[14]. In these cases
a) L3a(n) = m7 (k > 37 ke W)

where k = [v/n + 2], since m, (k — 2 + cos(30°)) = 1, and

b) L3b(n) k_5+2\/m7 (k>5, ke IN),
where k = [v/n + 2], since my(k — 5 + 2 cos(15°) + 2 cos(15°)) = 1.
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PAT4 Forn =k(k+1) (k> 2, k € IN) the pattern consists of (k — 1) alternating
columns with & circles each [14]. In Figure 3 this pattern is demonstrated for

n = 20. In this case
La( )_kz—k—\/%
W= s o

as my(k — 1+ sin(a)) = 1, where cos(a) = 7.

PAT5 Focusing on the new pattern class, we can see that the centers of the circles
are located in a grid which is built by composing two shifted rectangular grids.
An example of this pattern is demonstrated in Figure 2 and in Figure 3. The
number of non-overlapping circles (n) which can be arranged in a square by
using this pattern is a function of two integers p,q € IN, p # g, subject to the
following constraints:

p* < 3¢°,
¢* < 3p*.

For the sake of clarity, three cases will be distinguished:

e pand q are both even; then p = 2p*; ¢ = 2¢*, and n = 2p*¢* +p* +q¢* +1
e piseven and ¢ is odd; then p = 2p*; ¢ = 2¢*+ 1, and n = (2p* + 1)(¢* + 1)
e Dboth pand g are odd, then p = 2p*+1; ¢ = 2¢*+1, and n = 2(p*+1)(¢*+1)

° ° ° e o o o
e e e
° o0 ° °
o o o o
® ° ® ®
o o o
° o0 ° ® o o o o

Figure 2. Examples (p,q,n) using PAT5, (2,3,6), (5,3,12) and (6,4,18).

and for all the cases Ls(n) = 1% + q% holds for this lower bound.

The maximum of the derived lower bounds provides the statement of the theorem
with the suggested substitutions, wherever necessary. |

Further on, Table 1 will summarize the results obtained by applying the discussed
patterns. With patterns PAT1 to PAT5 only 48 out of 99 values of n can directly
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g 0 g

A AR TA 4

1
m=0.34891526037401 n=14

m=0.33333333333333 n=16 m=0.34108137740210 n=15

r=0.12500000000000 c=40 r=0.12716654751512 c=36 r=0.12933179371003 c=32

d=0.78539816339744 =0 d=0.76205601092668 =0 d=0.73567925554268 f=1
PAT1 PAT2 PAT3a

=D AN @D a> FEY Y Y
N - &/> L 4
q > a M
N 70 N |
q - IINR qd vl
N . . oA A A

m=0.25881904510252 n=23 m=0.28661165235168 n=20 m=0.30046260628866 n=18

r=0.10280232337978 c=56 r=0.11138234751247 c=44 r=0.11552143246399 c=38

d=0.76363103212612 f=0 d=0.77949368686760 f=0 d=0.75465335787566 f=0
PAT3b PAT4 PATS5

Figure 3. Examples of patterns for n = 16 (PAT1), n = 15 (PAT2), n = 14 (PAT3a), n = 23
(PAT3b), n = 20 (PAT4) and n = 18 (PAT5). These examples are optimal packings.

be modelled. In columns headers n, pattern and m!, denote the number of circles,
the pattern used and the value of the lower bound of m,,, respectively. If there are
two different patterns for the same value of n, then the better one has been chosen.
In column n, boldface means that this packing is known as the optimal solution for
the given packing circles in a square problem. All the values of m! in Table 1 are
those calculated by the respective formula of the specific pattern.

In [36], using a similar pattern as in PATS5, it was proved that if N,(o) is the
maximum number of points with mutual distance of at least 1, that can be placed
into a square of side o, then

~V3__ V3

<—N (0).

2

Resulting from this inequality we can provide the following lower bound of m.,:
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1-V3+V4—2V/3+8/3n
<my
2\/371

After an analysis of (3) and m!,, it can be seen that m!, is always greater than the
lower bound given by (3) for 2 < n < 100.

3)

Table 1. Lower bounds of m, obtained by using repeated patterns. The proven
optimal solutions are denoted by boldface in columns n.

pattern ml, | n  pattern ml, | n  pattern ml, |

PATS5 1.414213 | 21  PAT5 0.260341 52 PATS 0.165386
PAT?2 1.035276 | 23 PAT3b  0.258819 | 56 PAT4 0.156156
PAT1 1.000000 | 24 PAT2 0.254333 | 59 PATS 0.150231
PATS5 0.707106 | 25 PAT1 0.250000 | 63 PATS 0.146772
PAT5 0.600925 | 27 PATS 0.235849 | 64 PAT1 0.142857
PAT3a  0.535898 | 30 PAT4 0.224502 | 65 PATS 0.138888
PAT?2 0.517638 | 32 PATS5 0.208333 72 PAT4 0.135416
PAT1 0.500000 | 34 PAT3b  0.205604 75 PATS 0.132089
10  PATS 0.416666 | 35 PAT2 0.202763 | 80 PATS 0.129576
12 PAT5 0.388730 | 36 PAT1 0.200000 | 81 PAT1 0.125000
13 PATS 0.353553 | 39 PATS5 0.194365 | 83 PATS 0.122890
14 PAT3a  0.348915 | 42 PAT4 0.184277 | 88 PATS 0.120185
15 PAT2 0.341081 | 44 PATS5 0.174379 | 90 PAT4 0.119501
16 PAT1 0.333333 | 47 PAT3b  0.170540 | 94 PAT4 0.117924
18 PAT5 0.300462 | 48 PATS 0.169329 | 99 PAT4 0.116018
20 PAT4 0.286611 | 49 PAT1 0.166666 | 100 PAT1 0.111111

SOOI WN |3

3.2.  An upper bound of m,,

THEOREM 2 Consider the packing circles in a unit square problem according to
Problem 2. The mazimum of the minimal distance between n points in the unit
square m,, is not greater than

my = min(U; (n), Uz (n))

with
2
Ui(n) = , where
Vi + Ca(V3 = 5) + (L] - 2)(2 - 3) -2
Ch=n-2 if 3 <n <6,
Ch=n-1 if7<n <9, and
C,=3 [gJ — 5+ n mod 2, otherwise.

1+, /1+(n—-1)2

n—1

3

=
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(Here |.| denotes the greatest integer not greater than the argument.)

Proof: Let us describe an analytical expression for the upper bounds of the
packing problem. It is based on the area of n circles and on the area of their
neighbourhood within the unit square:

e Uj: The area of n circles (nr2w) plus the gaps’ area between circles and between
circles and the sides of the square must be less than 1. The convex hull of the
circles’ centers divides the square into two regions. Let us compute now the
area of the minimal gaps in these regions.

Circles-to-side case. When packing n circles in a square, it is evident that the
minimum gap between circles and the sides of the square can be gained when
4|+/n] — 2 gaps (with the respective corrections at the corners) are in contact
with the sides of the square of r2(2 — 7/2) areas per gaps (see Figure 4).

Figure 4. The minimal gaps between a circle and the sides of a square and among three circles.

Circles-to-circles case. In a similar way, the minimal gap between circles
occurs when there are three circles in the packing which have all the possible
three contacts, as it is shown in Figure 4. For a packing of n circles the minimal
number of circle-to-circle gaps is given by:

n—2 3<n<6
Ch=¢ n—-1 7T<n<9

3 [%J — 5+ n mod 2, otherwise

when the circles are in the densest (hexagonal) arrangement. The area of this
minimum gap between three circles is r2(v/3 — Z), thus the sum of the area of
the circles and gaps will be:

§ =12 (nm+Ca(vV3- )+ (lvR] -2 - 3)).
Due to S <1,

i< (nr+ Cu(vVB= )+ (lval -2)2-3))

S
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2
T+ Cu(VB - 5) + (lva) —2)2-5) -2

e Uy: From Oler theorem [37] the following statement implies [10]: if X is a
compact convex subset of the plane, then the number of points with a mutual
distance of at least 1 can be at most

2
V3
where A(X) is the area and P(X) is the perimeter of X. If X is a o side of
square, then A(X) = 02 and P(X) = 4o.
Based on (4) and (1), we can conclude that

m,, < Ui(n) =

A(X) + %P(X) +1, (4)

1+,/1+(n-1)=%
V3
mnSUQ(n): n—1 .

By using the values of the lower and upper bounds of m,, described beforehand
and our own numerical results, obtained by the algorithm described in [1], Figure
5 has been built.

4. Minimal polynomials of optimal packings and exact results

Actually, we know the exact values for the solution of the packing circles in a unit
square problem for several values of n. The set of known exact values is given in
Table 2.

Table 2. Exact values of m,, for some n.

2 V2 15 (1+vV2-v3)/2

3 V6 -2 16 1/3

4 1 18 V13/12

5 V2/2 20 (6 —V2)/16

6 V13/6 23 (V6 —+2)/4

7 2(2 — V/3) 24 44+2vV3—-+/26+15V3
8  (V6—-+v2)/2 | 25 1/4

9 1/2 27 V/89/40

12 V/34/15 36 1/5

14 2(4—-+3)/13

In case we are familiar with the optimal solution for the problem of packing n
circles in a square, the definition of the corresponding minimal polynomial may be
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0,5

— Lower bound

0 1 L L 0,15 1 1 L L L L L 1 1 1 1 1 L
2 4 6 ] 10 T2 14 16 18 200 22 24 26 28 30 32 34 36 38 40

Number of circles Number of circles
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0,14

013

0,15
0,12

0.14
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42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 8 88 90 92 94 96 98 100

) P O IR U HU SN HPN HPU NAPU NP NP B PR | ol

Number of circles Number of circles

Figure 5. Lower (ml,) and upper bound (m¥) on the m,, values and the best m,, values found by
our program [1] (denoted by circles) are displayed.

given. The procedure to obtain this minimal polynomial involves the generation of a
system of equations representing the corresponding optimal packing. The variables
of the system of equations are the coordinates of the centers of the circles and
the maximum minimal distance, m,. So the number of variables for the system
is 2n 4+ 1. For every two points (centers of the circles) of which distance is equal
to my, an equation can be written. In addition, it is also well-known that every
point located at the border of the square has got at least one coordinate which is
equal to 0 or 1, so the corresponding equation(s) can be written. After reducing the
system of equations, a symbolic algebra package e.g. MAPLE, MATHEMATICA,
etc., can be used to calculate the Grébner basis of the system [40] and the minimal
polynomial for which the smallest positive root is m,.

The minimal polynomial can be obtained for the most cases, but e.g. for n = 13
this method was unable [40] to provide the minimal polynomial. In Table 3 the
minimal polynomials for several values of n are shown [17, 39]. The degrees of these
polynomials indicate how difficult it might be to find the relevant solution of the
packing problem. When the degree of the minimal polynomial became less than
five, we were able to calculate the exact value of m,,, which values can be found in
Table 2. For n = 10, 11, 17 and 19, we were able to provide close bounds of m,,
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Table 8. The minimal polynomials of certain optimal solutions. Here * denotes cases with unknown
minimal polynomials.

| n | Minimal polynomials

© 00O Utk Wi

—_
o

11
12
13

14
15

17
18
19

20

22
23
24
25

27
36

m2 —2

m? — 16m?2 + 16
m—1

2m? —1
36m? — 13

m2 —8m +4
m* —4m? +1
2m — 1

1180129m '8 — 11436428m!7 4 98015844m!6 — 462103584m !> + 1145811528m % +
—1398966480m13 + 227573920m 2 + 1526909568m ! — 1038261808m 10 — 2960321792m° +
+7803109440m8 — 9722063488m” + 7918461504m5 — 4564076288m5 + 1899131648m* —
m® 4+ 8m7 — 22m8 + 20m® + 18m* — 24m3 — 24m? +32m — 8

225m? — 34

5322808420171924937409m*0 + 586773959338049886173232m39 +
+13024448845332271203266928m38 — 12988409567056909990170432m37 + ...+
+2960075719794736758784m?2 — 174103532094609162240m + 4756927106410086400
13m2 — 16m + 4

om* —4m3 —2m2 +4m — 1

3m —1

m® —4m7 + 6mb — 14m® + 22m* — 20m3 + 36m?2 — 26m + 5

—144m? + 13

242m10 — 1430m? — 8109m® + 58704m7 — 78452mS — 2918m5 + 43315m* + 39812m3 —
—53516m?2 + 20592m — 2704

128m?2 — 96m + 17

*

*
16m?* — 16m2 + 1
m* — 16m3 4+ 20m? —8m + 1

4m — 1

*

1600m? — 89
bm — 1

using a reliable algorithm for finding the first root of a function [2]. The mentioned
algorithm is based on a branch and bounds technique with interval arithmetic. The
numerical results for these four values of n are given in interval form in Table 4.

Table 4. Reliable numerical results for n =

10,11,17,19.
| n | Lower and upper bounds for my, |
10 | [0.421279541378085, 0.421279544064904]
11 | [0.398207310236837, 0.398207310236850]
17 | [0.306153985300327, 0.306153985300338]
[ ]

19 0.289541991994965, 0.289541991994996
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5. Summary

First of all, in this series of papers a short introduction has been given to the
problem of equal circles packing in a unit square. Then, in a nutshell the most
important results have been summarized. Finally, new and improved lower and
upper bounds on the maximal distance of the centers of the circles are demonstrated.
These bounds are based on geometrical considerations and on an extended set of
patterns of the related circles, moreover, they can be applied directly in some
computational procedures for finding the best packings. Last but not least, they
can also be well-utilised in the evaluation of the approximate solutions provided by
our numerical algorithm discussed in the second paper of this series. The known
exact optimal values are comprised in a table together with the related minimal
polynomials for some cases.
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