
EFFICIENT COMPUTATION OF CLEBSCH-GORDAN COEFFICIENTS

c© William O. Straub, PhD
Pasadena, California

Here’s a paper I wrote many years ago, back when the calculation of Clebsch-Gordan coefficients was giving
me a hard time. In those days, we used to look up the coefficients in tables because it was a pain to calculate
them directly (even for small systems). Nowadays, there are online calculators that will do the work for you,
but if you want to brush up on the subject (or if you want your own calculator), have a look at this.

Introduction

The problem of angular momentum addition requires the calculation of Clebsch-Gordan (CG) coefficients.
While systems involving small values of momenta and spin present no special problem, larger systems require
extensive computational effort. This paper describes a straightforward method for computing the coefficients
for any two-particle problem exactly by means of a simplified form of the recursion formula in a notation
that is particularly accessible to the third- or fourth-year student. The method is summarized in a brief
BASIC program.

1. Problem Overview

Consider the addition of orbital and spin angular momenta for two particles (or two unconnected sys-
tems) that reside in uncoupled eigenstates designed as | j1m1〉 and | j1m1〉. A product state | j m〉 is to
be constructed that is composed of combinations of these individual state eigenkets. The spin terms mk

may take on any integer or half-integer values between −jk 6 mk 6 jk. Although there can be a total of
(2j1 +1) · (2j2 +1) possible spin pairs m1,m2, each pair must satisfy m1 +m2 = m if the corresponding CG
coefficient is to be non-zero. Similarly, the product-space orbital momentum j must satisfy the triangle rule
| j1 − j2| 6 j 6 j1 + j2, while the product spin m must satisfy −j 6 m 6 j. The CG coefficients, which we
denote here as 〈j2m2|〈j1m1|jm〉, effectively superpose all state products via the closure relation

|jm〉 =
∑

m1,m2

|j1m1〉|j2m2〉〈j2m2|〈j1m1|jm〉 (1.1)

A particular CG coefficient therefore represents the (real) probability amplitude for the corresponding prod-
uct ket |j1m1〉|j2m2〉 (a more proper expression would be |j1m1〉 ⊗ |j2 m2〉, since the systems must be
unconnected). The summation over spins introduces many disallowed states, so that the number of non-zero
CG coefficients is comparatively small. If we restrict the spins in (1.1) so that only allowed state products
appear in the summation, then the problem can be restated more succinctly as

|jm〉 =
n∑

k=1

|j1m1,k〉|j2m2,k〉〈j2m2,k|〈j1m1,k|jm〉

where k represents an allowed spin pair index and n is the total number of such pairs (this is also the number
of non-zero CG coefficients). In the following, we shall assume that all valid spin pairs for a particular problem
have been identified (this will be demonstrated shortly). We can then drop the somewhat imposing notation
for the CG coefficient by expressing it instead as

Ck = 〈 j2m2,k|〈 j1m1,k| jm〉

We can now write

|jm〉 =
n∑

k=1

Ck |j1m1,k〉|j2 m2,k〉 (1.2)

1

By assigning m1,1 as the lowest allowed spin for particle 1 (and m1,n as the highest value), we can develop
a convenient method for relabelling all of the spin indices that will greatly simplify the determination of the
Ck.

2. Approach

In order to solve (1.2) for the CG coefficients, we must first know how many non-zero coefficients exist for a
given problem and what the allowed spin pairs are. Both of these questions can be answered by plotting the
condition m2 = m−m1 on the m1,m2 plane and observing the locations of the quantities m1,1 and m1,n. It
is easy to verify that if j2−j1 > m, then the lowest possible spin for particle 1 must be m1,1 = −j1; otherwise,
m1,1 = m− j2. Similarly, it can be shown that the highest possible spin for particle 1 is m1,n = m+ j2 when
j1 − j2 > m; otherwise, m1,n = j1. The number of states n spanning the lowest and highest spins can then
be determined by n = m1,n −m1,1 + 1. However, for computational purposes it is easier to dispense with
the inequality conditions altogether and just use the equivalent identities

m1,1 =
m− j1 − j2 + | j1 − j2 +m|

2

m1,n =
m+ j1 + j2 − | j1 − j2 −m|

2

(We omit the proof for brevity.) Once m1,1 and m1,n have been determined, we can calculate all of the other
values m1,k by addition: m1,k+1 = m1,k + 1, etc., up to m1,n. The allowed spins for particle 2 may then be
determined using m2,k = m−m1,k.

We begin the solution of (1.2) by imposing the condition that the eigenvalues of the total angular momen-
tum operator Ĵ2 acting on | jm〉 must be the same as those obtained by action of Ĵ2 on | j1m1,k〉| j2m2,k〉.
That is, we demand that

Ĵ 2|jm〉 = j(j + 1) ~2|jm〉

be expandable in terms of the operator Ĵ = Ĵ1+ Ĵ2, where Ĵk = Ĵkx êx+ Ĵky êy + Ĵkz êz (k = 1, 2). However,
things are made difficult by the fact that the operators Ĵkx and Ĵky acting on | j1m1,k〉| j2m2,k〉 lead to
extremely complicated expressions. Fortunately, the total angular momentum operator Ĵ 2 is expressible in
terms of the quantities Ĵk via the familiar identity

Ĵ2 = Ĵ 2
1 + Ĵ 2

2 + 2 Ĵ1zĴ2z + Ĵ1+Ĵ2− + Ĵ1−Ĵ2+ (2.1)

where the quantities Ĵk± = Ĵkx± iĴky are the raising (+) and lowering (−) operators (or “ladder” operators)
for particle k, which increase or decrease the spin component by one unit (the normalization constant for
the lth spin pair is

√
jk(jk + 1)−mk,l(mk,l ± 1)~). The operators in (2.1) provide convenient “access” to

the eigenvalues we need to pull out of | j1m1,k〉| j2m2,k〉 because they involve only the commuting operators
Ĵ 2
k and Ĵkz and the ladder operators. Therefore, we have

Ĵ 2|jm〉 =
n∑

k=1

Ck [Ĵ
2
1 + Ĵ 2

2 + 2 Ĵ1zĴ2z + Ĵ1+Ĵ2− + Ĵ1−Ĵ2+] |jm1,k〉|jm2,k〉

Carrying out the indicated operations, we obtain a set of n homogeneous linear equations in the CG coeffi-
cients:

Ck { j1(j1 + 1) + j2(j2 + 1) + 2m1,km2,k − j(j + 1)} |j1m1,k〉|j2m2,k〉+

Ck

√
j1(j1 + 1)−m1,k(m1,k + 1)

√
j2(j2 + 1)−m2,k(m2,k − 1)| j1m1,k + 1〉|j2m2,k − 1〉+

Ck

√
j1(j1 − 1)−m1,k(m1,k − 1)

√
j2(j2 + 1)−m2,k(m2,k + 1)| j1m1,k − 1〉|j2m2,k + 1〉 = 0

The various products kets here serve only to keep track of the indices for Ck and their coefficients; as we
really have no need for them (our goal, after all, is to find the Ck), it would considerably simplify matters

2

if we could dispense with them altogether. One way of doing this is to relabel the second and third terms
in the above expression so that the corresponding product kets are the same as that in the first term,
| j1m1,k〉| j2m2,k〉. We can then divide this product ket out since it is arbitrary for any k.

To accomplish this, consider the factor m1,k + 1 in the second term above. It follows that if m1,1 is
the lowest allowable spin for particle 1, a step up to the next spin must require that m1,k + 1 = m1,k+1.
Likewise, since m2,k = m −m1,k, we must have m2,k + 1 = m1,k−1. Similarly, in the third term we have
m1,k−1 = m1,k−1 and m2,k+1 = m2,k−1. In view of this, we set k′ = k+1 in the second term, which changes
Ck to Ck−1 and converts the product ket from | j1m1,k + 1〉| j2m2,k − 1〉 to | j1m1,k〉| j2m2,k〉. Similarly,
revising the index from k to k−1 in the third term changes Ck to Ck+1 with a similar change in the product
ket. We then arrive at

Ck { j1(j1 + 1) + j2(j2 + 1) + 2m1,km2,k − j(j + 1)} | j1m1,k〉|j2m2,k〉+

Ck−1

√
j1(j1 + 1)−m1,k m1,k−1

√
j2(j2 + 1)−m2,k m2,k−1 | j1m1,k〉|j2m2,k 〉+

Ck+1

√
j1(j1 + 1)−m1,k m1,k+1

√
j2(j2 + 1)−m2,k m2,k+1 |j1m1,k〉|j2m2,k 〉 = 0

Again, because the product ket is arbitrary, we can drop it altogether and write

Ck {j1(j1 + 1) + j2(j2 + 1) + 2m1,km2,k − j(j + 1)}+

Ck−1

√
j1(j1 + 1)−m1,k m1,k−1

√
j2(j2 + 1)−m2,k m2,k−1+ (2.2)

Ck+1

√
j1(j1 + 1)−m1,k m1,k+1

√
j2(j2 + 1)−m2,k m2,k+1 = 0

Equation (2.2) is a particularly simple form of the recursion relations for the CG coefficients. It can be viewed
as the homogeneous matrix expression AC = 0, where the square matrix A (of rank n) has diagonal elements
corresponding to the coefficients of Ck, while the two off-diagonal elements correspond to the coefficients of
Ck−1 and Ck+1. The coefficient matrix is therefore tridiagonal with a bandwidth of two. Note also that
off-diagonal terms like m1,k ·m1,k+1 are invariant with respect to interchange of the indices k and k + 1;
thus, Ak k+1 = Ak+1 k, so the coefficient matrix A is symmetric. Tridiagonal, symmetric matrices are very
easy to manipulate and, although the matrix is singular, we can solve for the Ck using the fact that the CG
coefficients are the components of a unit vector (that is, the sum of the squares of the CG coefficients is
unity). This condition uniquely (up to a sign) determines the coefficients. The CG coefficients are therefore
simply the components of the n-dimensional nullspace vector associated with the coefficient matrix A.

3. Computational Procedure

To find the Ck, we must solve the homogenous set of equations given by
a11 a12 0 0 0 · · · 0
a12 a22 a23 0 0 · · · 0
0 a23 a33 a34 0 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 an−1n ann

C1

C2

C3

...
Cn

 =

0
0
0
...
0

 ,

subject to |C| = 1, where

ak k = j1(j1 + 1) + j2(j2 + 1) + 2m1,km2,k − j(j + 1) (3.1)

and
ak k+1 =

√
j1(j1 + 1)−m1,km1,k+1

√
j2(j2 + 1)−m2,km2,k+1 (3.2)

Any backward-substitution procedure can be used to solve for the coefficients. It is conventional to fix the
sign of the coefficients by taking Cn to be a positive number.

3

4. Example

Suppose we are given two particles with j1 = 3 and j2 = 6, which we wish to combine into a product state
in which j = 5, m = 3. Our definition for n tells us that there will be a total of 7 CG coefficients; that is, in
order for m1,k +m2,k = 3, the particle spins can combine only in the seven ordered pairs

m1,1, m2,1 = −3, 6
m1,2, m2,2 = −2, 5
m1,3, m2,3 = −1, 4
m1,4, m2,4 = 0, 3

m1,5, m2,5 = 1, 2

m1,6, m2,6 = 2, 1

m1,7, m2,7 = 3, 0

as is easily confirmed by the formulas given earlier. The matrix elements may be computed from (3.1) and
(3.2); they are

a11 = −12 a12 = a21 = 6
√
2

a22 = 4 a23 = a32 = 2
√
55

a33 = 16 a34 = a43 = 6
√
10

a44 = 24 a45 = a54 = 12
√
3

a55 = 28 a56 = a65 = 20

a66 = 28 a67 = a76 = 6
√
7

a77 = 24

with all the other matrix elements being zero. We therefore have to solve the system

−12 6
√
2 0 0 0 0 0

6
√
2 4 2

√
55 0 0 0 0

0 2
√
55 16 6

√
10 0 0 0

0 0 6
√
10 24 12

√
3 0 0

0 0 0 12
√
3 28 20 0

0 0 0 0 20 28 6
√
7

0 0 0 0 0 6
√
7 24

C1

C2

C3

C4

C5

C6

C7

=

0
0
0
0
0
0
0

subject to |C| = 1. The student should have no difficulty showing that the solution is

〈3,−3|〈6, 6|5, 3〉
〈3,−2|〈6, 5|5, 3〉
〈3,−1|〈6, 4|5, 3〉
〈3, 0|〈6, 3|5, 3〉
〈3, 1|〈6, 2|5, 3〉
〈3, 2|〈6, 1|5, 3〉
〈3, 3|〈6, 0|5, 3〉

=

√
11/91√
22/91

−
√
10/91

−1/
√
91√

7/39

−8/
√
273

2/
√
39

5. Computer Program

The two-particle procedure is very easy to implement on a computer. It can be used to calculate the CG
coefficients of systems having extremely large momenta and spin exactly (within the limits of floating-point
precision). The following BASIC program uses the formulas presented above to compute the CG coefficients

4

in decimal format (the student might want to modify the program to output the coefficients for simple
problems in terms of ratios of integers, as we have done in the example problem). Because the backward-
substitution procedure needs only the last n− 1 rows of the n×n coefficient matrix A (which is sparse with
never more than 2n− 2 non-zero elements), the program constructs a vector B from these elements in lieu
of storing the entire coefficient matrix.

A typical personal computer can calculate the 31 CG coefficients for the problem j = 50, m = 40, j1 =
30, j2 = 40 in a fraction of a second. However, the decimal output is a serious limitation. For this example,
the value of 〈30, 30|〈40, 10|50, 40〉 is approximately 0.1246637149976796; by comparison, Mathematica returns

〈30, 30|〈40, 10|50, 40〉 = 261

2

√
27564505

30205852104326

= 0.12466371499767958758 . . .

which is decidedly more useful.

DEFDBL A-S: DIM B(2000), C(2000): INPUT "Enter j,m,j1,j2: ", J,M,J1,J2

M1 = (M-J1-J2+ABS(J1-J2+M))/2: N = (M+J1+J2-ABS(J1-J2-M))/2-M1+1

1: FOR X = N-1 TO 1 STEP -1: IF FLAG = 1 THEN GOTO 2

B(2*X) = J1*(J1+1)+J2*(J2+1)+2*(M1+X)*(M-M1-X)-J*(J+1): C(N) =1

B(2*X-1) = SQR((J1*(J1+1)-(M1+X)*(M1+X-1))*(J2*(J2+1)-(M-M1-X)*(M-M1-X+1)))

2: C(X) = -(B(2*X)*C(X+1)+B(2*X+1)*C(X+2))/B(2*X-1)

SUM = SUM + C(X)^2: NEXT X

FLAG = FLAG + 1: IF FLAG = 1 THEN C(N) = SQR(1/(SUM+1)): GOTO 1

FOR X = 1 TO N: PRINT USING "#.##############"; C(X): NEXT X: END

5

