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The Riemann-Christoffel tensor of differential geometry is the usual starting point for the unfolding of
Einstein’s theory of general relativity. However, there is another tensor that in some ways is more
fundamental. It is called the Weyl conformal tensor, and it is responsible for a type of gravitational
distortion that is quite different than that described by the Ricci terms in the RC tensor. Here I will derive
the Weyl tensor for the n-dimensional case.

By way of summary, here is the RC tensor:

Rλναβ =

{
λ
να

}
|β
−

{
λ
νβ

}
|α

+

{
λ
σβ

}{
σ
να

}
−

{
λ
σα

}{
σ
νβ

}
where the subscript notation |β means partial differentiation with respect to xβ . The quantities in brackets
are the Christoffel symbols of the second kind,{

λ
να

}
=

1

2
gλσ

[
gσν|α + gσα|ν − gνα|σ

]
The RC tensor has a number of interesting symmetry and contraction properties. For one, it can be
contracted to give the symmetric Ricci tensor

Rλνλβ = Rνβ

It can also be converted to its lower-index form via

gλµR
λ
ναβ = Rµναβ

and it exhibits two symmetry properties that we will employ to derive the Weyl tensor:

Rµναβ = −Rµνβα
Rµναβ = −Rνµαβ

The German mathematical physicist Hermann Weyl (1885–1955) made many fundamental and
important contributions to physics, but perhaps he is most famous for his 1929 discovery of
quantum-mechanical phase invariance. Phase invariance, known more properly (but misleadingly) as gauge
invariance, is a symmetry that underlies all modern quantum theories. It basically is a statement that
action Lagrangians are invariant with respect to the replacement

Ψ(x)→ eiπ(x)Ψ(x)

where Ψ is a wave function and π is an arbitrary function of space and time. Weyl’s gauge theory sprang
from an even earlier (1918) theory in which Weyl demanded that Einstein’s theory of general relativity
should be invariant with respect to the similar replacement

gµν(x)→ eπ(x)gµν(x)

which we shall call a metric gauge transformation. It is remarkable that the Weyl tensor can be deduced by
simply demanding that it be invariant with respect to this transformation.

Using this gauge principle, Weyl was able to derive all of electrodynamics from a generalized
Einstein-Maxwell Lagrangian. Sadly, this theory failed, but it gave birth to Weyl’s 1929 discovery, which
today is considered one of the most profound tenets of modern quantum physics.
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Around the time of his 1918 theory, Weyl became interested in the cosmological aspects of general
relativity, particularly the curvature properties of the universe. Perhaps still infatuated with metric gauge
transformations, Weyl wanted to know if there was a tensor, similar to the RC tensor, that was invariant
with respect to the above transformation. He found it, only to learn much later that his tensor, now called
the Weyl conformal tensor, was of fundamental importance in the modern understanding of the two types
of gravitational effects of matter: compression and tidal deformation.

In order to derive the Weyl tensor, we first note that the terms conformal invariance and metric gauge
invariance are synonymous and involve the transformation

gµν(x) = eπ(x)gµν(x)

For simplicity, let us consider only infinitesimal transformations:

gµν(x) = eεπ(x)gµν ' (1 + επ)gµν

where ε is a small constant such that all quantities involving ε2 and higher terms can be neglected. We
then have

δgµν = gµν − gµν
= επgµν

Similarly,

δgµν = gµν − gµν

= −επgµν

Weyl decided that his tensor should consist solely of the RC tensor and its two possible contractions.
First is the symmetric Ricci tensor,

Rβν = Rνβ = Rλνλβ

while the other is the Ricci scalar
R = gβνRβν

Weyl called his tensor Cλναβ ; for simplicity, he wanted this tensor to have the same symmetry properties as
Rλναβ but with the conformal condition

δCλναβ = 0

I’m not sure how Weyl proceeded at this point, but I do know that it is more convenient to deal with the
lower-index form, which is given by

Cµναβ = gµλC
λ
ναβ

from which we have the variation
δCµναβ = επCµναβ

We now assume that the lower-index Weyl tensor is composed of the lower-index RC tensor along with all
permutations of the Ricci tensor and Ricci scalar:

Cµναβ = Rµναβ +AµαRνβ +BµβRνα + CναRµβ +DνβRµα + EµνRαβ + FαβRµν +WµναβR (1)

where the various coefficients are tensors to be determined. Given the stated symmetry properties of
Rµναβ and Rµν , we see immediately that the coefficients Eµν and Fαβ must be zero.

To calculate δCµναβ , we must take the variation of the right-hand side of (1). To save time, I will
simply right down the required variations (they’re easy to work out, and you can do it on some rainy night):

δRµναβ = επRµναβ +
1

2
εgµαπ|β||ν −

1

2
εgµβπ|α||ν +

1

2
εgβν π|µ||α −

1

2
εgαν π|µ||β

δRµα =
1

2
εgµαg

ρσπ|ρ||σ +
1

2
(n− 2)επ|µ||α

δR = (n− 1)εgρσπ|ρ||σ − επR
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where π|µ||α(= π|α||µ) is the double covariant derivative of the scalar π:

π|µ||α = π|µ|α − πλ
{
λ
µα

}
Plugging these identities into (1), we get the rather messy result
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We now require that all terms involving π|µ||α and their permutations cancel each other. For example,
the term 1

2 (n− 2)εAµαπ|ν||β must be set equal to − 1
2 εgµαπ|ν||β , from which we get the identifications

Aµα = − 1

n− 2
gµα , δAµα = − 1

n− 2
επgµα

Similarly, we have the identities

Bµβ =
1

n− 2
gµβ , δBµβ =

1

n− 2
επgµβ

Cνα =
1

n− 2
gνα , δCνα =

1

n− 2
επgνα

Dνβ = − 1

n− 2
gνβ , δDνβ = − 1

n− 2
επgνβ

This leaves the terms involving gρσπ|ρ||σ, which we can similarly eliminate by setting

Wµναβ =
1

(n− 1)(n− 2)
[gµα gβν − gµβ gαν ] , δWµναβ = 2επWµναβ

We have now identified all the coefficients, and it is easy to see that (2) reduces to

δCµναβ = επCµναβ

as required, where

Cµναβ = Rµναβ +
1

n− 2
[gµβ Rνα − gµαRνβ + gναRµβ − gνβ Rµα] +

1

(n− 1)(n− 2)
[gµα gβν − gµβ gαν ]R

The conformal, upper-index form of the tensor is obtained by raising the first index:

Cλναβ = Rλναβ +
1

n− 2

[
δλβ Rνα − δλαRνβ + gναR

λ
β − gν betaRλα

]
+

1

(n− 1)(n− 2)

[
δλα gβν − δλβ gαν

]
R
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and this is the form that is usually encountered in the textbooks. It is obvious from this expression that
the Weyl tensor must be zero for n 6 2; what is perhaps not so obvious is that it vanishes for n = 3 as well.
Incidentally, note that any contraction of the Weyl tensor (such as Cνβ = Cλνλβ) is identically zero, even in
a curved space where Rνβ 6= 0.

The Weyl conformal tensor is essentially the RC tensor with the Ricci terms subtracted out. The Ricci
terms themselves are tied to the matter tensor Tµν via Einstein’s gravitational field equations

Rµν −
1

2
gµνR = −8πG

c4
Tµν

where G is the gravitational constant (I’ve left out the cosmological constant for brevity). Because gravity
tends to compact matter, the Ricci terms are associated with gravitational compaction and collapse, a
process that involves the reduction in the initial volume of a chunk of matter or a gas cloud. By
comparison, the Weyl tensor is associated with a curvature phenomenon known as tidal deformation, which
preserves the volume but distorts its shape (gravity waves passing through a planet, the tidal “scrunching”
effect just outside the event horizon of a black hole, etc.). In the absence of matter, the matter tensor and
Ricci terms all go to zero; however, the Weyl tensor (like the Riemann-Christoffel tensor) does not vanish
provided there is a source of gravity (i.e., mass-energy) somewhere. In this sense, the Weyl tensor is more
fundamental than the RC tensor.

My intent here was simply to derive the Weyl tensor, not to elaborate on its properties. For a much
more detailed description of the Weyl tensor and its importance in the evolution of the universe (especially
the Weyl curvature hypothesis), entropy, the arrow of time, and tidal distortion, see the following books by
the noted British mathematical physicist Roger Penrose:

1. R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe. Knopf, 2004.

2. R. Penrose, The Emperor’s New Mind. Penguin, 1989.

4


