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“The use of general connections means asking for trouble.”

—Abraham Pais

In addition to his seminal 1929 exposition on quantum mechanical gauge invariance1, Hermann Weyl
demonstrated how the concept of a spinor (essentially a flat-space two-component quantity with non-tensor-
like transformation properties) could be carried over to the curved space of general relativity. Prior to Weyl’s
paper, spinors were recognized primarily as mathematical objects that transformed in the space of SU (2),
but in 1928 Dirac showed that spinors were fundamental to the quantum mechanical description of spin—1/2
particles (electrons). However, the spacetime stage that Dirac’s spinors operated in was still Lorentzian.
Because spinors are neither scalars nor vectors, at that time it was unclear how spinors behaved in curved
spaces. Weyl’s paper provided a means for this description using tetrads (vierbeins) as the necessary link
between Lorentzian space and curved Riemannian space.

Weyl’s elucidation of spinor behavior in curved space and his development of the so-called spin connection
ωabλand the associated spin vector ωλ = ωabλσ

ab was noteworthy, but his primary purpose was to demonstrate
the profound connection between quantum mechanical gauge invariance and the electromagnetic field. Weyl’s
1929 paper served to complete his earlier (1918) theory2 in which Weyl attempted to derive electrodynamics
from the geometrical structure of a generalized Riemannian manifold via a scale-invariant transformation
of the metric tensor. This attempt failed, but the manifold he discovered (known as Weyl space), is still a
subject of interest in theoretical physics.

Although Weyl’s paper reflected upon his earlier effort, it is obvious from the 1929 paper that he had
moved on, and consequently he did not address spinor descriptions in a curved Weyl space. In the following
elementary discussion we pick up on this topic and consider the modifications that such a space forces upon
the spin connection and its associated algebra. In particular, we shall consider the issue of metricity for
Lorentz and coordinate vector spaces and how Weyl’s geometry affects metricity in these spaces. There is no
physics in this at all, mostly just index juggling, but it serves as an object lesson in the hazards of dealing
with non-metric-compatible manifolds.

1. Basic Tetrad Formalism
It is always possible to find a coordinate system in which the space is Lorentzian at a given point.

Einstein demonstrated this with his famous thought experiment involving a passenger on an elevator. Unless
the elevator is equipped with windows, the passenger cannot know whether she is in a stationary elevator
in Earth’s gravitational field or if her elevator is being uniformly accelerated somewhere out in space. If
she stands in one place in the elevator, then her coordinates are suffi ciently local to the extent that slight
variations in the Earth’s radial gravitational field cannot be detected. However, if her elevator is suffi ciently
large, she could move around and discover that the gravity field is convergent (that is, points to the center
of the Earth) and gets either weaker or stronger as she climbs up and down the elevator’s walls.

If a locally-flat coordinate system can be found even in a strong gravitational field, then there must
be a way to express the Lorentzian metric ηµν with the curved-space metric gµν(x). In four-dimensional
spacetime, one uses quantities called tetrads eaµ (or vierbeins, which is German for “four legs”) to link the
two metrics:

gµν(x) = eaµ(x) ebν(x) ηab (1.1)

A tetrad is a rather odd little fellow having one foot in flat space and the other in curved space. To
distinguish the two with regard to tetrad notation, we will utilize Latin indices (a, b, c, etc.) for the Lorentz
index and Greek indices for the curved-space part. Thus, you can think of a tetrad as a tensor quantity
whose curved-space part transforms just like a coordinate vector:

êaµ =
∂xλ

∂x̂µ
eaλ
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From (1.1), it is easy to see that we can also write

ηab = eµa (x) e νb (x) gµν(x)

provided we make the requirement that

eµa (x) ebµ(x) = δba and eµa (x) eaν(x) = δµν , etc. (1.2)

Because each tetrad index runs from 0 to 3, there are a total of 16 components in the tetrad. Taken as a
matrix, we can consider eµa (with an upper Greek index) to be the tetrad inverse. Consequently, e

µ
a = |e|−1M ,

where M is the transpose of the tetrad cofactor matrix.

Tetrads in mixed Lorentz/curved-space quantities serve essentially as “index-exchange operators” be-
cause the tetrads themselves are always mixed. This characteristic will be used often in what follows.

2. Parallel Transfer and Covariant Differentiation
Consider the change in a given contravariant vector field ξµ(x) from point to point in some manifold.

Provided ξµ is not a constant field, the vector ξµ(x+ dx) at an infinitesimally-near point will differ to first
order from ξµ(x) according to

ξµ(x+ dx) = ξµ(x) + ∂αξ
µ dxα or

dξµ = ∂αξ
µ dxα

where dξµ = ξµ(x + dx) − ξµ(x) is the total change in the vector. The quantity dξµ cannot be a tensor
because, as it is obtained by taking the difference between two vectors at different points in space, it is not
a coordinate-independent quantity. More importantly, the partial differential ∂αξ

µ is not a tensor. This is
something of a disaster, as there seems to be no way to define vector differentiation in a covariant sense. To
see this more clearly, consider how ξµ is transformed by a change of coordinates to the system x′:

ξ′µ(x′) =
∂x′µ

∂xν
ξν(x) (2.1)

The total change in ξ′µ(x′) at the neighboring point is therefore

dξ′µ(x′) =
∂2x′µ

∂xν∂xα
ξν(x) dxα +

∂x′µ

∂xν
dξν(x) (2.2)

Thus, dξµ does not transform properly because of the second-order differential term.

Clearly, we need a prescription for vector and tensor differentiation that obeys standard tensor trans-
formation laws. To do this, we need to be able to compute the difference ξµ(x + dx) − ξµ(x) at the same
point. As odd as this sounds, it is in fact possible using the concept known as parallel transfer.

The figure on the following page shows a vector ξµ(x) located at an arbitrary point x on a given curve
λ. Treated as a vector field, it will have a slightly different orientation at the infinitesimally-near point
x+ dx located elsewhere on the curve. The vector difference is given by dξµ = ξµ(x+ dx)− ξµ(x) which, as
explained above, has no intrinsic geometrical significance because the vectors are separated. On the other
hand, if the vector ξµ represented a constant vector field (that is, dξµ = 0), then the separation clearly
would not matter anymore, as the vectors at x and x+ dx would be (trivially) identical. Under the change
of coordinates (2.1), however, the new vector ξ′µ would clearly be a function of its coordinates, and (2.2)
would become

dξ′µ(x′) =
∂2x′µ

∂xν∂xα
ξνdxα

=
∂2x′µ

∂xν∂xα
∂xν

∂x′λ
∂xα

∂x′β
ξ′λ dx′β (2.3)

where in the last line we have transformed everything into the primed coordinate system. Eq.(2.3), which
represents a transformed constant vector field, can be more succinctly written as

dξ′µ = Γ′µλβ(x′) ξ′λdx′β (2.4)
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where

Γ′µλβ =
∂2x′µ

∂xν∂xα
∂xν

∂x′λ
∂xα

∂x′β

The (non-tensor) quantities Γ′µλβ are called coeffi cients of affi ne connection because they affi nely (linearly)
relate the change in a vector with the vector itself and the transport distance dx. With the use of (2.1), it
can easily be shown that the connections transform according to

Γ′µλβ(x′) =
∂xν

∂x′λ
∂xσ

∂x′β
∂x′µ

∂xβ
Γβνσ(x) +

∂2x′µ

∂xν∂xα
∂xν

∂x′λ
∂xα

∂x′β

We now consider (2.4) to be the quantity which, when added to a vector field at x, effectively resurrects
the original vector at the point x+ dx. Taken as such, we will rename (2.4) as

δξµ = Γµλβ ξ
λdxβ (2.5)

Thus, δξµ is a non-vector quantity which, when added to ξµ(x), produces a parallel copy of the vector at
the neighboring point on the curve. The vector quantity ξµ(x) + δξµ(x) therefore represents the parallel-
transferred vector which can now be compared with the vector ξµ(x) + ∂βξ

µ in a truly covariant sense, since
they both occur at the same spacetime point. It can easily be shown that the difference

∂βξ
µdxβ − δξµ =

[
∂βξ

µ − Γµλβ ξ
λ
]
dxβ

is in fact a tensor. We define ∂β [̇ ]dxβ−δ to be the covariant derivative operator D. The associated covariant
derivative of ξµ is then defined by

Dβξ
µ = ∂βξ

µ − Γµλβ ξ
λ (2.6)

so that D/dxβ = Dβ . The covariant derivative is of paramount importance in differential geometry and
Einstein’s theory of general relativity, where the coeffi cients of affi ne connection account for the presence of
gravitational fields.

.

.

λ

ξ
µ

ξ
µ  + ξ

µ

D ξµ

ξ
µ  + δξ

µ
dxαdα

x

x + dx

Eq (2.6) defines the covariant derivative of a contravariant vector, and the same process can be developed
for covariant vectors. Consider a scalar field η(x) defined by the invariant product η = ξµϕµ; partial
differentiation of this with respect to xα gives

∂αη = ∂αξ
µϕµ + ξµ∂αϕµ

= Dαξ
µϕµ + Γµλα ξ

λϕµ + ξµ∂αϕµ
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Using the fact that the difference ∂αη − Dαξ
µϕµ is a covariant vector, it is obvious that the quantity

∂αϕµ + Γλµα ϕλ is a covariant tensor. We therefore define the derivative of a covariant vector as

Dνξµ = ∂νξµ + Γλµν ξλ

The main difference between this and (2.6) is the changed sign in the connection term. The application of
these rules to mixed and unmixed tensors of any rank should be obvious.

How does parallel transfer affect non-vector quantities? Obviously, the key difference between a vector
like ξµ and a tensor like gµν lies in the fact that vectors have specific orientations or directions at every
spacetime point, whereas tensors do not. Consequently, a parallel-transferred tensor follows the standard
partial differentiation rule (δgµν = ∂αg

µνdxα, etc.).

Now that we have defined covariant differentiation for contravariant and covariant vectors and tensors,
it is natural to ask what the quantity δξµ represents. To answer this, consider the definition of vector
magnitude given by l2 = ξµξµ. Then parallel transfer gives

2l dl = Γµλα ξµξ
λdxα + ξµ δξµ

(Note that δl = dl.) As it is reasonable to assume that vector length should not change under parallel
transfer, rearrangement of the above expression for dl = 0 shows that δξµ = −Γλµαξλdx

α (note that this
expression cannot be used to develop the process of covariant differentiation, because that has already been
accomplished using the upper-index form δξµ = Γµλβ ξ

λdxβ). Later, we will consider the case where dl does
not vanish.

The notion of parallel transfer described here is necessarily very elementary, but it is given primarily as
a reminder of how the concept of covariant differentiation is derived. It should not be surprising that the
notion of parallel transfer of spinor fields can also be derived along similar lines (and involving a different
kind of connection term), and we will do just that shortly. For now it will suffi ce to note that covariant
differentiation of tensor fields will be denoted by Dµ(Γ), where the argument is a reminder that we are
dealing with coeffi cients of affi ne connection.

Because the second-order differential term in (2.3) in symmetric with regard to the lower indices, the
affi ne coeffi cient is also symmetric. Over the years there have been efforts by many physicists (notably
Einstein) to develop theories involving non-symmetric coeffi cients, but we will not consider them here.

It should be noted that the precise makeup of the connections is, up to now, completely arbitrary. The
connections can presumably include terms involving gravitational and electromagnetic fields (and other fields
as well), but all efforts to define the connections outside of the metric tensor gµν and its first and second
derivatives have failed. Weyl was the first researcher to seriously attempt the embedding of electrodynamics
into gravity via a generalized connection term, but this attempt also failed. To date, gravity is the only
theory that has been successfully encoded into the connection.

Lastly, it should be remarked that most authors use a different sign convention for the affi ne connection
than the one used here. It really makes no difference but, for those of you who may be a tad confused, just
replace Γµλβ with −Γµλβ and everything should make sense.

3. Metric Compatibility and Weyl’s 1918 Gauge Theory
By way of review, Riemannian space is characterized by two conditions: symmetry of the connection

coeffi cients (Γλαβ = Γλβα) and the vanishing of the metric covariant derivative, Dλ(Γ)gµν = Dλ(Γ)gµν = 0.
The latter condition enforces the invariance of vector length or magnitude, and also identifies the connection
with the Christoffel symbol:

Γλαβ = −
{
λ
µν

}
, where (3.1){

λ
µν

}
=

1

2
gλα(∂µgαν + ∂νgαµ − ∂αgµν)

Riemannian space is therefore called metric compatible, and the statement Dλ(Γ)gµν = 0 is called metricity.
As a consequence, Riemannian space preserves the lengths of vectors under parallel transfer. To see this, we
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parallel-transfer vector length given by l2 = gµνA
µAv, giving, after some rearrangement,

2l dl = ∂αgµνA
µAνdxα + gµνδA

µAν + gµνA
µδAν

= Dα(Γ)gµν A
µAνdxα (3.2)

which of course vanishes in Riemannian space.

Weyl noted that, by relaxing the requirement of constant vector magnitude, he could generalize the
Riemannian manifold. He assumed that the physical change in vector length under parallel transfer, if not
identically zero, should be proportional to its original length, and he wrote

dl = φαdx
αl (3.3)

where φα(x) is a new field that Weyl subsequently identified with the electromagnetic four-potential. Insert-
ing this identity into (3.2), Weyl noted that his new spacetime geometry (now called a Weyl space) was no
longer metric compatible:

Dα(Γ)gµν = 2gµνφα (3.4)

Weyl went on to derive an expression for the connection in terms of the metric and the φ—field, and noted that
the connection was invariant with respect to a local rescaling of the metric tensor, gµν → λ(x)gµν , where λ is
an arbitrary function of the coordinates. Weyl gave this rescaling the name Eichinvarianz, meaning “gauge
invariance.”While Weyl was ultimately forced to abandon his hope that this non-Riemannian geometry
would unify gravitation and electrodynamics, he subsequently demonstrated that gauge invariance, suitably
applied to the quantum field Ψ, provided the hoped-for connection with electrodynamics via gauge-invariant
Lagrangians. Today, the gauge invariance principle, Weyl’s brainchild, is one of the most seminal concepts
in modern theoretical physics.

4. Spinors in Curved Space
Recall that Dirac’s equation in an electromagnetic field is

iγµ(∂µ −
ie

h̄c
Aµ)ψ − mc

h̄
ψ = 0

where Aµ is the electromagnetic 4-potential in some given set of units. The presence of an electromagnetic
field mandates the transformation of the simple partial differential operator from ∂µ to ∂µ− ie/h̄cAµ (which
is called the covariant derivative for spinor quantities). This change is also necessary if the Dirac-Maxwell
Lagrangian is to be gauge invariant. One might reasonably expect that a similar form holds for the covariant
derivative of a spinor in curved space. Indeed, Weyl had the insight to recognize this identification holds as
a general principle, and he expressed the curved-space derivative of the Dirac spinor as

∂µψ → Dµψ

= (∂µ + Γµ)ψ (4.1)

where Γµ(x) is some 4× 4 matrix that makes the Dirac equation valid for curved space.

As for the transformation properties of ψ(x) itself, consider the change in ψ that results from an
infinitesimal pure displacement:

ψ(x+ dx) = ψ(x) + ∂µψ(x) dxµ or

dψ = ∂µψ(x) dxµ

where dψ = ψ(x + dx) − ψ(x).We can then demand that the total change in ψ in a curved space under
parallel transfer be

ψ(x+ dx) = ψ(x) + Γµψ(x) dxµ or

Dψ = Γµ ψ(x) dxµ and

Dψ† = ψ† Γ†µ(x) dxµ (4.2)

5



This is our starting point for the derivation of the field Γµ.

5. Coordinate and Lorentz Vectors in Curved Space
In order to derive Γµ(x), we will utilize the equivalence of vectors expressed in what is called the

coordinate form (or C-form) V µ(x) and the Lorentz form (L-form) V a(x), where

V a = eaµ V
µ (5.1)

and vice versa. The magnitude or length L of these vectors is the same for both forms:

L2 = ηabV
aV b = gµν(x)V µV ν

The use of L-vectors presents an immediate problem: how do they transform under parallel displace-
ment? In similarity with (2.4), we assume the existence of an L-form connection term such that

D(ω)V a = ωabλV
bdxλ

where ωabλ(x) is called the spin connection. Although the spin connection and the metric connection Γαµν
can be viewed as different versions of the same quantity, we shall see that the spin connection has different
symmetry properties with respect to its indices.

The notion of covariant differentiation can also be specified for L-forms. We define the covariant deriv-
ative of the vector V a as

Dλ(ω)V a = ∂λV
a − ωabλV b

Furthermore, we will define the total covariant derivative of a “mixed”tensor as

Dλ(ω + Γ)T aβ = ∂λT
a
β + ΓµβλT

a
µ − ωabλT bβ

Of particular interest is the total covariant derivative of the Lorentz metric ηab:

Dλ(ω + Γ)ηab = Dλ(ω)ηab

= ηasω
s
bλ + ηsbω

s
aλ

= ωabλ + ωbaλ

If we make the reasonable demand that the Lorentz metric be constant under parallel transfer, its covariant
derivative should vanish; the lower-index spin connection must then be antisymmetric in its first two indices:

ωabλ = −ωbaλ (5.2)

6. The Tetrad Postulate
Let us parallel-transfer the vector relation expressed in 5.1:

D(ω + Γ)V a = V µD(ω + Γ)eaµ + eaµD(ω + Γ)V µ

ωabλV
bdxλ = V µ ∂λe

a
µ dx

λ + eaµ ΓµαλV
αdxλ

(Remember that the tetrad is not a vector, so it transfers via the partial derivative.) Relabeling indices, we
get

esµω
a
sλV

µdxλ = V µ ∂λe
a
µ dx

λ + eµα ΓαµλV
µdxλ

Dropping the common V µdxλ term, we have

esµω
a
sλ = ∂λe

a
µ + eµα Γαµλ (6.1)

However, this is just the statement that the total covariant derivative of the tetrad vanishes:

Dλ(ω + Γ)eaµ = 0 (6.2)
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This important result is known as the tetrad postulate.

It will now be instructive to show from the tetrad postulate the explicit relationship between the two
connections Γαµλ and ω

a
sλ. Using (1.2) and (6.1), it is easy to see that

Γλµν = −eλa ∂νeaµ + eλa e
s
µ ω

a
sν (6.3)

This is a most interesting result —the connection separates into two terms, one representing the Christoffel
term (2.1) and another involving spin. From this, we see already that the spin connection cannot be
completely metrical. (The apparent economy of notation in expressing the Christoffel symbol in terms of
tetrads is illusory, as the inverse tetrad eλa is a rather messy expression.)

Because the connection is symmetric in its lower indices, the expression (6.3) is problematic. For
one thing, the corresponding Christoffel term eλa ∂νe

a
µ is obviously not symmetric in µ and ν (nor can it

be symmetrized). For another, we see that the spin term can absorb the tetrad indices to become ωλµν ,
implying that the this quantity is also symmetric. However, we will show later that the spin connection has
no such symmetry. There is also a diffi culty with the contracted connection; clearly, contraction can only
occur between λ and µ, not ν:

Γλλν = −eλa ∂νeaλ + eλa e
s
λ ω

a
sν

= −eλa ∂νeaλ + ων (6.4)

where eλa ∂νe
a
λ = ∂ν log

√−g and ων = ωλλν As we will see, ων is identically zero in a metric-compatible
space. Evidently, a non-metric-compatible space must accommodate a contracted spin connection. We will
see that this is in fact the case in Weyl space, but there are dark clouds ahead.

7. Derivation of Γµ

Consider the Dirac scalar quantity

I = ψψ

= ψ†γ0ψ

where γ0 is the time-coordinate gamma matrix in either the Weyl or Dirac representation,

ψ0 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 (Weyl representation)

=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 (Dirac representation)

We assume that the Dirac matrices are expressible in either C -form or L-form, even though they are not
vector quantities:

γµ(x) = eµa γ
a

In doing so, we must allow for the possibility that the C-form gamma matrices can be functions of the
coordinates. Consequently, we will write γ0 as γ0(x), despite the fact that we have no idea what these
coordinate-dependent matrices might look like. Under parallel transfer of the scalar I, we then have

DI = Dψ†(x) γ0(x)ψ(x) + ψ†(x)Dγ0(x)ψ(x) + ψ†(x) γ0(x)Dψ(x)

= ψ† Γ†µ γ
0ψdxµ + ψ†∂µγ

0ψdxµ + ψ† γ0Γµψdx
µ = 0

The terms ψ† and ψ dxµ bracket each of these quantities; dropping them, we thus have the requirement

Γ†µ γ
0 + ∂µγ

0 + γ0Γµ = 0 (7.1)

7



Now, the quantity ψγλψ is a coordinate vector; let us call it V λ(x). We assume that this vector is
parallel-transferred in the same manner as it is in general relativity, which is

δV λ = Γλαµ(x)V αdxµ

Similarly, we shall assume that V a = ψγaψ is an L-vector. Parallel-transferring the identity V λ = ψγλψ
then gives

DV λ = Dψ† γ0γλ ψ + ψ†Dγ0γλ ψ + ψ† γ0Dγλ ψ + ψ† γ0γλDψ

= ψ† Γ†µ γ
0γλψdxµ + ψ†(∂µγ

0)γλψdxµ + ψ†γ0∂µγ
λψdxµ + ψ† γ0γλΓµψdx

µ

= Γλαµ V
αdxµ

= ψ† Γλαµ γ
αψdxµ (7.2)

Cancelling common terms, we have

Γ†µ γ
0γλ + (∂µγ

0)γλ + γ0∂µγ
λ + γ0γλΓµ = Γλαµ γ

α

Using (7.1), we can get rid of the Γ†µ γ
0 term and thus arrive at the the elegant identity

Dµ(Γ)γλ = Γµγ
λ − γλΓµ (7.3)

where Dµ(Γ)γλ = ∂µγ
λ − γαΓλαµ. Note that the ∂µγ

0 term vanished when we inserted (7.1) into (7.2).

Similarly, for the L-form V a = ψγaψ, we have the differential quantity

DV a = Dψ† γ0γa ψ + ψ†Dγ0γa ψ + ψ† γ0γaDψ

= ψ† Γ†µ γ
0γaψdxµ + ψ†(∂µγ

0)γaψdxµ + ψ† γ0γaΓµψdx
µ

= ωabµV
bdxµ = ψ†ωabµ γ

bψdxµ

(Note that dγa = 0 because γa are the constant Dirac matrices.) Again, the spinor terms ψ† and ψdxµ

bracket the other quantities, and we’re left with

ωabµ γ
b = γaΓµ − Γµ γ

a (7.4)

By using the tetrad identity γb = ebµ γ
µ, it is easy to show from this and (6.3) that

ωabµ = eλb Dµ(Γ)eaλ

Let us now consider the length of some L-vector V a, which is

l2 = ηabV
aV b (7.5)

Under parallel transfer, the total change in the length is then

2l Dl = ηabV
aDV b + ηabV

bDV a

= ηabV
aωbsµV

sdxµ + ηabV
bωasµV

sdxµ

= (ωabµ + ωbaµ)V aV bdxµ

(note that we have lowered the upper index on ωasµ with the L-metric). Since dl vanishes in Riemannian
space, we see confirmation that the lower-indexed connection ωabµ is antisymmetric with respect to its
L-indices.

Now consider (7.4), whose lower-index form is

ωabµ γ
b = γaΓµ − Γµ γa
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Left-multiplying by γa and rearranging, we get

4Γµ = ωbaµ γ
aγb + γaΓµγ

a

where we have used the fact that γaγa = 4. Unfortunately, Γµ is also present on the rhs of this expression.
In order to solve for it, let’s pre- and post-multiply both sides by γa and γ

a, respectively. This gives

4γaΓµγ
a = ωbaµ γcγ

aγbγc + γbγaΓµγ
aγb

where care has been taken in labeling the indices. Evaluation of the term ωbaµ γcγ
aγbγc requires a trick: we

have to move the γc term over to its partner γc, where they can cancel each other (remember that γcγ
c = 4).

We do this in two steps, first by writing γbγc = 2ηbc − γcγb and then γaγc = 2ηac − γcγa. This gives

ωbaµ γcγ
aγbγc = (ωbaµ + ωabµ)(γaγb + γbγa)

= 2ηab(ωbaµ + ωabµ)

= 0

We now have

4γaΓµγ
a = γbγaΓµγ

aγb or

γaΓµγ
a =

1

4
γbγaΓµγ

aγb

If we now pre- and post-multiply this expression again by γa and γ
a , we get

γaΓµγ
a =

1

16
γcγbγaΓµγ

aγbγc

After k such iterations, we have

γaΓµγ
a =

1

4k+1
[
...γdγcγbγaΓµγ

aγbγcγd...
]

Provided the term in brackets remains finite, we will have γaΓµγ
a = 0 as k →∞. The sought-after identity

for the spin vector is then

Γµ =
1

4
ωbaµ γ

aγb (7.6)

=
1

8
ωbaµ σ

ab

where σab = γaγb − γbγa.

8. The Spin Connection in Weyl Space
Since metricity is not preserved in Weyl space, we expect that some changes will have to be made to

the above findings. However, the tetrad postulate remains valid in Weyl space, and we can easily determine
the total covariant derivative of gµν = eaµ e

b
ν ηab:

Dλ(Γ + ω)gµν = Dλ(Γ)gµν

= Dλ(Γ + ω)eaµ e
b
ν ηab

= eaµ e
b
νDλ(ω)ηab

= eaµ e
b
ν(nacω

c
bλ + ncbω

c
aλ)

= eaµ e
b
ν(ωabλ + ωbaλ)

But now we have the Weyl identity Dλ(Γ)gµν = 2gµνφλ, so that

2gµνφλ = eaµ e
b
ν(ωabλ + ωbaλ)
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Contraction with gµν leads to

2nφλ = gµνeaµ e
b
ν(ωabλ + ωbaλ)

= ηab(ωabλ + ωbaλ)

≡ 2ωλ

Thus, in a Weyl space we have ωµ = 4φµ, again indicating that the non-metricity inherent in Weyl space
is connected with a non-zero contracted spin connection. In a non-trivial Weyl space this quantity cannot
vanish, so the usual antisymmetry property for ωabλ (5.2) must be modified. What can that property be?

To answer that question, consider the definition for the invariant line element,

ds2 = ηabdx
adxb

The associated unit L-vector Ua = dxa/ds cannot change length under parallel transfer, as its length is
unity, so we must have

D(ω)ηabU
aU b = (ηasω

s
bλ + ηsbω

s
aλ)UaU bdxλ + ηabU

sωasλU
bdxλ + ηabU

aUsωbsλdx
λ = 0

or

0 = ωabλU
aU bUλ

= ωabcU
aU bU c

where we have used the identity U c = ecλU
λ. The lower-case spin connection ωabc cannot be identically zero,

so it must satisfy the peculiar cyclic symmetry condition

ωabc + ωcab + ωbca = 0 (8.1)

Contraction with ηab gives

ηab(ωabc + ωcab + ωbca) = ωc + ηabωcab + ηabωbca = 0

which shows that ωabc must be antisymmetric in the “wrong”index pair, ωabc = −ωacb. Because of this, the
spin vector Γµ that we derived earlier must also be wrong, as the procedure we used to arrive at (7.6) no
longer holds. The same calculation that we did to derive (7.6) leads to

Γµ = lim
k→∞

{
1

4
ωbaµ γ

aγb +
1

4
kωµ +

1

4k+1
[
...γdγcγbγaΓµγ

aγbγcγd...
]}

(8.2)

which blows up unless ωµ is identically zero. Thus, in Weyl space there can be no spinor covariant derivative!

In view of (8.1). it is interesting to note that a similar cyclic symmetry property holds for the C-form
unit vector Uµ, which can be derived from parallel-transfer in the analogous C-form space:

D(Γ)gµνU
µUν = [Dλ(Γ)gµν ]UµUνUλ = 0

From this we see that either the metric covariant derivative is identically zero, or it satisfies the peculiar
cyclic symmetry condition

Dλ(Γ)gµν +Dν(Γ)gλµ +Dµ(Γ)gνλ = 0 (8.3)

Note, however, that Weyl’s identity for the metric covariant derivative, Dλ(Γ)gµν = 2gµνφλ, does not satisfy
this condition. This not only throws doubt on Weyl’s 1918 theory but on the concept of a Weyl space itself.

9. Alternatives to Weyl Space
The basis for Weyl’s 1918 theory is Dαgµν = 2gµνφα, which results from his assumption that vector

magnitude parallel-transfers according to dl = φαdx
αl. Using this definition, it is easy to show that the

connection in Weyl space is

Γλµν = −
{
λ
µν

}
+ δλµ φν + δλν φµ − gµνgλβφβ

10



Weyl’s primary reason for believing that this connection was physically meaningful lies in the fact that it
is invariant with respect to a change of scale in the metric tensor, gµν → λ(x)gµν . Since the equations
of electrodynamics are invariant with respect to a regauging of the electromagnetic four-potential, Weyl
believed his connection might be used to unify gravitation with electrodynamics. In view of the diffi culties
outlined above regarding non-metricity, it is not surprising that Weyl’s attempt failed, although historically
the failure was attributed to physical, rather than mathematical, arguments.

But could not Weyl’s theory be generalized to produce a consistent, non-metric-compatible theory?
Consider the following modification to the Weyl connection

Γλµν = −
{
λ
µν

}
+ a δλµ φν + b δλν φµ + c gµνg

λβφβ

where a, b and c are arbitrary constants. To maintain symmetry in the connection indices, we must have
a = b. We now note that this connection must satisfy the cyclic symmetry operation shown in (8.3). It can
be shown without diffi culty that this requires c = −2a, so the the “revised”Weyl connection is

Γλµν = −
{
λ
µν

}
+ a δλµ φν + a δλν φµ − 2a gµνg

λβφβ

Similarly, it is easy to show that the parallel transfer formulas for vectors are now

δξλ = −
{
λ
µν

}
ξµdxν + a ξλφνdx

ν + a δλνξ
µφµ dx

ν − 2a gβνg
µλξβφµ dx

ν

δξλ =

{
µ
λν

}
ξµdx

ν + a ξλφνdx
ν + a gλνg

µβξµφβ dx
ν − 2a ξνφλdx

ν

These expressions are consistent with the parallel-transfer formula for the length of the vector ξλ, which is

2ldl = Dνgµαξ
µξαdxν

= 2al2φνdx
ν − 2aξνξ

µφµdx
ν (9.1)

where

Dνgµα = 2agµαφν − agµνφα − agανφµ
Dνg

µα = −2agµαφν + aδµνg
αβφβ + aδαν g

µβφβ

Furthermore, by contracting Dνgµα with gµα we have

φν =
1

6a
gµαDνgµα

Thus, if φν is a given external field, it induces a non-zero metric covariant derivative consistent with this
identity.

This development seems to be the most reasonable generalization of Weyl space possible. But there
are major problems with it that cannot be overcome. While the revised Weyl space preserves the tetrad
postulate, it no longer admits a gauge-invariant connection. This is no great loss, as we know Weyl’s 1918
theory didn’t work, anyway. More serious is the fact that the contracted spin connection ωµ in the revised
space is identical to the corresponding Weyl vector derived earlier, so (8.2) still blows up. But the main
problem concerns the revised Weyl φ-field itself which, by (9.1), is obviously transfer-invariant. In this sense
it behaves just like the unit vector dxµ/ds. But φµ cannot be proportional to the unit vector, which itself is
proportional to the electromagnetic source vector, not the four-potential. Why this constancy of magnitude
should be the case for the vector φµ and not for other vectors is a mystery, and it casts further doubt on the
Weyl manifold and the hoped-for association of φµ with the electromagnetic 4-potential.

10. Does the Weyl φ-Field Have Any Relevance to Electrodynamics?
Although initially impressed with Weyl’s 1918 theory, Einstein subsequently objected to it on physical

grounds. His argument was as follows: if the length of a vector V µ is allowed to vary from point to point,
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then it must also vary with time. But then atomic spectral lines, the Compton wavelength of an electron, and
even the paths of classical and quantum particles would depend on their histories, in obvious contradiction
with physical experience. Weyl was unable to muster an adequate argument against this, but later London3

argued that the invariance of vector magnitude in (3.3) might be preserved within a closed transport path
by assuming that ∮

dl

l
=

∮
φµ dx

µ = 2πin

where n is an integer (using this approach, London was even able to derive the expression for the quantized
orbital radii of the hydrogen atom). However, this argument requires that the Weyl vector be a purely
imaginary quantity, which admittedly complicates things.

Consider now the revised Weyl expression (9.1), which for a closed path is∮
dl

l
= 2a

∮
φµ dx

µ − 2a

∮
1

l2
ξµξ

νφνdx
µ (10.1)

Unfortunately, the vector ξν itself is now involved in the last term, and it is unclear how (10.1) might be
evaluated for dl = 0.

Still, the unlikely possibility that an imaginary Weyl vector might play a role in quantum theory has
been explored by numerous researchers. The ideas of Hochberg and Plunien4 are particularly interesting.
They developed an action principle based on the gauge-invariant Lagrangian

L =
√
−g
[
aξϕ2R+ bDµϕDµϕ+ cWµνW

µν
]

(10.2)

where ϕ(x) is a propagating scalar field, ξ and λ are coupling constants, R is the Ricci scalar in Weyl space,
Wµν = Rααµν (which is non-zero in Weyl space), a, b, c are constants, and Dµ is a covariant derivative defined
by

Dµ = ∂µ + φµ

(It is easy to demonstrate that (10.2) is also gauge invariant with respect to the alternative Weyl space
presented in Section 9.) Hochberg and Plunien similarly developed an action principle based on spinor fields
in a gravitational field using the somewhat odd bilinear fermion form ψR

1
2ψ. By extremalizing these actions

with respect to the metric tensor, the Weyl vector φµ and the scalar and spinor fields, the authors were able
to derive a set of Einstein-Maxwell-Proca equations in which the manifold is manifestly Riemannian, not
Weylian. The Weyl vector then appears as a massive gauge vector that can couple only to fixed-chirality
fermions, which Hochberg and Plunien identified as neutrinos. In fact, based on these theoretical findings,
the authors conclude that the Weyl field is a form of dark matter!

On the basis of these considerations, it appears that the Weyl field is probably unrelated to electrody-
namics, but it may play an important role in the structure of spacetime itself (not unlike the Higgs field).
Thus, Weyl’s φ-field, originally proposed in 1918, might yet find relevance in 21st-century physics.

11. Final Comments
In his 1918 theory, Weyl attempted to derive electromagnetism from generalized Riemannian geometry.

This attempt was based on the premise of variable vector length under physical transplantation in spacetime,
which requires that Weyl’s manifold be non-metric-compatible. Einstein was the first to object to Weyl’s
theory on purely physical grounds, and in spite of heroic efforts to salvage the theory, Weyl ultimately
gave up on the idea that spacetime is gauge-invariant. However, Weyl subsequently applied the concept of
gauge invariance to quantum theory, where it worked brilliantly. The principle of quantum-mechanical gauge
invariance is today considered one of the irreducible pillars of modern theoretical physics.

In view of the foregoing, however, it is somewhat surprising that the concept of a Weyl space continues
to crop up in the literature. Admittedly, these appearances have been motivated primarily by theoretical,
rather than physical, considerations, although there still remains the possibility that the Weyl φ-field has
some relevance with regard to the structure of matter. Nevertheless, the mathematical problems inherent
in Weyl space in particular and non-metric-compatible spaces in general serve to emphasize the validity of
Pais’warning.5
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