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It is shown that, if the apparent directions of objects are plotted as points on a sphere surrounding the
observer, the Lorentz transformation corresponds to a conformal transformation on the surface of this
sphere. Thus, for sufficiently small subtended solid angle, an object will appear—optically—the same shape
to all observers. A sphere will photograph with precisely the same circular outline whether stationary or in
motion with respect to the camera. An object of less symmetry than a sphere, such as a meter stick, will
appear, when in rapid motion with respect to an observer, to have undergone rotation, not contraction.
The extent of this rotation is given by the aberration angle (#—¢’), in which 6 is the angle at which the
object is seen by the observer and ¢’ is the angle at which the object would be seen by another observer at
the same point stationary with respect to the object. Observers photographing the meter stick simul-
taneously from the same position will obtain precisely the same picture, except for a change in scale given
by the Doppler shift ratio, irrespective of their velocity relative to the meter stick. Even if methods of
measuring distance, such as stereoscopic photography, are used, the Lorentz contraction will not be visible,
although correction for the finite velocity of light will reveal it to be present.

INTRODUCTION

VER since Einstein presented his special theory of

relativity! in 1905 there seems to have been a
general belief that the Lorentz contraction should be
visible to the eye. Indeed, Lorentz stated? in 1922 that
the contraction could be photographed. Similar state-
ments appear in other references too numerous to be
mentioned, and even Einstein’s first paper leaves the
impression,® perhaps unintentionally, that the contrac-
tion due to relativistic motion should be visible. The
usual statement is that moving objects ‘“appear con-
tracted,” which is somewhat ambiguous. The special
theory predicts that the contraction can be observed
by a suitable experiment, and the words ‘‘observe”
and ‘“see” seem to be used interchangeably in this
connection.

There is, however, a clear distinction between ob-
serving and seeing. An observation of the shape of a fast-
moving object involves simultaneous measurement of
the position of a number of points on the object. If done
by means of light, all the quanta should leave the
surface simultaneously, as determined in the observer’s
system, but will arrive at the observer’s position at
different times. Similar restrictions would apply to the

*This work was supported by the U. S. Atomic Energy
Commission.

L A. Einstein, Ann. Physik 17, 891 (1905).

2H. A. Lorentz, Lectures on Theoretical Physics (Macmillan
and Company, Ltd., London, 1931; translated from Dutch edition
of 1922), Vol. 3, p. 203.

3In reference 1 [English translation from The Principle of
Relativity (Dover Publications, Inc., New York, reprinted from
1923 Methuen edition)] Einstein stated: “A rigid body which,
measured in a state of rest, has the form of a sphere, there-
fore has in a state of motion—viewed [betrachtet] from the
stationary system—the form of an ellipsoid of revolution with
the axes R(1—122/c*}, R R. Thus, whereas the ¥ and Z dimensions
of the sphere (and therefore of every rigid body of no matter
what form) do not appear [nicht erscheinen] modified by the
motion, the X dimension appears [erscheint] shortened in the
ratio 1: (1—22/c®4, i.e., the greater the value of v, the greater
the shortening. For v=¢ all moving objects—viewed [betrachtet]
from the “stationary’” system—shrivel up into plane figures.”

use of radar as an observational method. In such ob-
servations the data received must be corrected for the
finite velocity of light, using measured distances to
various points of the moving object. In seeing the object,
on the other hand, or photographing it, all the light
quanta arrive simultaneously at the eye (or shutter),
having departed from the object at various earlier
times. Clearly this should make a difference between
the contracted shape which is in principle observable
and the actual visual appearance of a fast-moving
object.

CONFORMALITY OF ABERRATION

The basic question of the visibility of the Lorentz
contraction may be stated as that of the appearance of
a rapidly moving object in an instantaneous photo-
graph. The object, of known shape when at rest, is
assumed to have a high uniform speed relative to the
camera. The camera is assumed to be at rest in a
Galilean (unaccelerated) frame of reference. Of course
it would make no difference if the camera were, instead,
considered to move at high speed past the stationary
object, but the photograph produced must be examined
at rest, so it is simpler to consider the camera as
stationary. The mechanism of the camera must be such
as to give it essentially instantaneous shutter speed
and sharp focus over the necessary depth of field.

The questions of whether to use photographic film
which lies in a plane or is curved so that all points are
at the same distance from the lens (or pinhole), and
whether to use a lens corrected to eliminate optical
distortions, could be troublesome. To simplify matters,
it is assumed that the object subtends a visual solid
angle sufficiently small that these matters need not be
considered. It is assumed that the camera is pointed
directly at the apparent position of the object, so that
the light rays strike the film in a perpendicular direc-
tion, producing an image in the center of the photo-
graphic film. The camera is assumed, also for simplicity,
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not to be rotating to follow the motion of the object,
but this is an unessential restriction and would make
no difference in the results so long as distortion of the
camera due to relativistic angular motion is negligible.

With these assumptions and restrictions defined, the
problem of the photographic (or visual) appearance of a
rapidly moving object is not a difficult one. The optical
image produced by a pinhole lens on a photographic
emulsion at constant distance from the aperture is
identical with the picture produced by plotting, on a
spherical surface centered at the point of observation
(eye or camera lens), the apparent visual directions of
all points of the object as seen by observer O. For an
observer O’ having zero velocity relative to the object,
this would clearly result in an uncontracted image. If
this particular observer is located instantaneously at
the same position as that of observer O, with respect to
whom the object is not at rest, it is possible to calculate
the apparent directions of these same points, as seen by
O, from the equation for relativistic aberration.

Spherical polar coordinate angles 6 and ¢, forming
an orthogonal coordinate system (8 is the polar angle
and ¢ the azimuthal angle), are to be used by observer
O in plotting on the spherical surface the apparent in-
stantaneous direction of various points of the moving
object. Let the object be moving at constant velocity v,
relative to O, in the direction §=0. Let observer O be
receiving light from some particular point of the object
which appears to be in the direction (8,¢). Let observer
O’ be instantaneously at the position of O, using the
coordinate system (#',¢'), and moving with velocity v
relative to O in the direction §=0=6’. The relation
between these two sets of coordinate angles is that of
the aberration equation, derived! from the Lorentz
transformation, and given by

(1—1%/¢?)? sing’
sinf=—————, (1)
1—(v/¢) cost’
or
cost’ —v/c

cosf) =————.
1—(v/c) cost’

1)

In these equations ¢ is, of course, the velocity of light.
The azimuthal angles are not affected by the Lorentz
transformation, so that

¢=¢'. (2)

It may be shown that this transformation of the
angles of observation is equivalent to a conformal trans-
formation on the spherical surfaces centered on the
observers. This fact and its consequences were appar-
ently first pointed out quite recently.*

Consider a small rectangular area of differential
extent on the surface centered on observer O, oriented

4J. Terrell, Bull. Am. Phys. Soc. Ser. II, 4, 294 (1959), and
unpublished paper on Tke Clock “Paradox”, Los Alamos Docu-
ment LADC-2842 (April 1957).
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along lines of constant 8 and ¢. The angles subtended
by the sides of this rectangle are df and sinfd¢. As seen
by observer O’ the corresponding angles are d¢’ and
sinf’d¢’ =sinf'd¢. Differentiation of Eq. (1) gives the
simple relation

df’ sinf’ 1—(v/c) cost (1—2/c?)?
B B (1—22/c%)} —1+(1)/c) cosd

df sinf

Thus the two rectangles have identical ratios between
their length and width. This, with the perpendicularity
between sides which is true for both rectangles, is
sufficient to establish the conformality of the transfor-
mation of angles of observation. The factor M is the
magnification, the ratio between subtended angles as
seen by observers O’ and O, or the ratio of apparent
distances of the object from the two observers. It is
interesting that M is precisely the Doppler shift factor,
becoming [(1—1/¢c)/(14v/c) ]} for 6=0=4¢".

The property of conformality in this sense, which is
intrinsic to relativistic aberration, is sufficient to ensure
that observers O and O’ will obtain pictures which are
identical, except for a magnification factor, over com-
parable regions of small subtended solid angle. Thus a
spherical object will produce a perfectly round image®
for both observers O and (0, in spite of the Lorentz con-
traction which O may observe by suitable methods.
Quite generally, objects will appear the same shape,
visually, to all observers, no matter what the relative
motion of object and unaccelerated observer may be.
Obviously these conclusions also extend to accelerated
objects. Although acceleration will in general change
the shape of the object, all observers at a given point
will agree as to what this shape is, as revealed in their
photographs. Even accelerated observers will obtain
similar photographs, provided that the cameras are
not appreciably distorted by the acceleration. In this
way the apparent shape of any object is invariant to
the Lorentz transformation, although the “actual”
shape, as given by careful measurement, will vary due
to the Lorentz contraction.

Thus the Lorentz contraction is effectively invisible.
Only when stereoscopic vision or photography is used,
combining observations from two different locations,
can any distortion of the object due to motion be seen,
and even this is not the expected contraction, as will be
discussed in a later section.

A3)

5 R. Penrose, Proc. Cambridge Phil. Soc. 55, 137 (1959), has
recently proved that a sphere will be seen as having a circular
outline by all observers, regardless of the relative velocity of
sphere and observer. Penrose gives several proofs, of which the
simplest involves the stereographic projection of a sphere centered
at the point of observation onto its equatorial plane from the
pole §=m. This transformation sends circles into circles, and
aberration merely expands the plane of projection by the factor
[(¢c—v)/(c+v)]t. Penrose’s conclusions agree with some given
in this paper, although his paper deals almost exclusively with
spherical objects. For this special case there is no restriction as to
subtended visual angle. For finite subtended angle the surface of
a moving sphere would appear somewhat distorted, although its
outline would be precisely circular.
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APPEARANCE OF MOVING METER STICK

At this point it may be objected that a meter stick
in motion past the observer in such a way that it is
moving parallel to its length, and is momentarily seen
by the observer at its point of closest approach, will
surely be seen as contracted. This case, probably the
first to come to mind, is illustrated in Fig. 1 for the
case 9/¢=0.8. Two meter sticks, S and .S/, are shown
here in such positions as to be seen instantaneously by
observer O at 90°. Meter stick S is stationary with
respect to observer O; meter stick S’ is moving with
velocity v in the direction §=0°; both meter sticks are
aligned along the direction §=0°. At the earlier time
when the light which reaches observer O left ', both
ends of the front face of the meter stick were at the same
distance from O, so that he does indeed see them as
they were at simultaneous earlier times, and the length
of the meter stick S’ appears contracted by comparison
with S, which was at the same distance. However, at
the still earlier time when light left the back side of the
meter stick, stick S’ was displaced farther to the left.
This results in the visibility of the left-hand end of .5,
if it is assumed to be a physical stick having three
dimensions. Thus the meter stick gives the appearance
of having undergone rotation rather than contraction.

Consider how this situation appears to observer O,
who is also moving with velocity v, with respect to O,
in the direction 6=0=¢". To O’ both meter sticks will
appear to be in the direction 6'=cos™(v/c). Stick S’
will appear stationary and turned through the angle
(6—¢") with respect to his line of sight. Stick S will
appear to be moving at high speed v to the left, but
will not appear contracted. Because the right-hand
side of S was much farther away from O’ at the time
light seen by O’ left it than was the left-hand side when
light left it, the time lags increase the apparent length
of S in such a way that its contracted length appears
quite normal (in two dimensions, as in the photograph).

v.
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FiG. 1. Two meter sticks, .S and S’, as seen by observers O and
0’, who are located momentarily at the same point. In the coordi-
nate system of observer O, O, and S’ are moving to the right
with velocity v, while S is stationary.
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FiG. 2. Apparent rotation from known orientation as seen for
relativistic motion of a meter stick with respect to an observer.
The meter stick is assumed to be moving in the direction §=0°
and to be oriented along its direction of motion.

In fact, as has been shown, both observers O and O’
see the same things, except for the apparent distance.
Thus the photographs taken by O and O', shown in
Fig. 1, are identical, or could be made identical by the
use of an enlarger. It is probable that observers O and
O’ will put different interpretations on what they see,
but the conformality of aberration ensures that, at
least over small solid angles, each will see precisely
what the other sees. No Lorentz contractions will be
visible, and all objects will appear normal.

APPARENT ROTATION DUE TO
RELATIVISTIC MOTION

It is apparent from the discussion above that objects
in rapid motion appear visually to have undergone a
rotation of extent (f—6’), the aberration angle, from
their “true” or known orientations. The angle 8 is the
angle at which the object appears to be, with the
coordinate system chosen so that the object is moving
past the observer O (considered stationary) in the
direction #=0. The angle ¢ is the apparent direction
of the object as perceived by another observer O,
located at the same position at the same time, to whom
the object appears stationary. The angles 6 and 6’ are
related by the aberration equation, Eq. (1).

The dependence of the apparent rotation on the angle
of observation is shown in Fig. 2 for the case v/c=0.8.
For =0 and 6=, the apparent rotation is zero. Two
other angles are of special interest. For 8=m/2 the
rotation is such that cos(6—6')=(1—?/c?)? and a
linear object which was oriented in the direction =0,
at the earlier time when light left it, will appear con-
tracted by the rotation just to the extent of the Lorentz
contraction. This does not constitute a proof of the
visibility of the contraction, as this relation does not
hold for other orientations, angles of observation, and
shapes, and since the appearance of the object is normal
at all times. The apparent rotation would, to observer
O, be a real rotation. The other angle of interest is that
for which cosf= —v/c; for this angle & =7/2, and the
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EMISSION OF LIGHT
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LORENTZ - CONTRACTED
SPHERE
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AS PHOTOGRAPHED

Fic. 3. Mechanism by which a Lorentz-contracted moving
sphere produces a round photographic image. The shaded area is
the visible portion of the spherical surface, with 4 and B the
farthest visible points along the direction of motion. The dashed
ellipse represents the earlier position of the sphere when the light
which will arrive at the camera simultaneously with light from
A left B. v

object, if linear and oriented along =0, will then be
seen broadside, with no view of the ends.

Thus a meter stick which is traveling, and oriented,
in the direction §=0 will appear to observer O to be
rotating about its line of motion in such a way as to
appear broadside at §=cos™(—v/c), and to present a
view of its rear end from that time on. For §=m/2 the
rotation will foreshorten the length to the same extent
as the Lorentz contraction, and for a meter stick
traveling nearly at the speed of light little will be seen
at this angle of apparent closest approach, or at most
angles, except the rear end.

For an object of rotational symmetry, such as a
sphere, no possibility of confusing rotation and con-
traction exists. Thus a sphere will always produce a
round photographic image, no matter what its un-
accelerated motion. The mechanism by which this
occurs is shown in Fig. 3. A Lorentz-contracted sphere is
assumed to be moving to the right with velocity v
relative to the observer; for the purpose of this figure
9/¢=0.8. The sphere is to be viewed at 6=w/2. The
uncontracted diameter of the sphere is D, giving a
contracted diameter of D(1—32/c%)% However, the
farthest visible points on the sphere, 4 and B, as
measured along the direction of motion, are not this
far apart. This corresponds to the visual effect of
apparent rotation. As plotted on the uncontracted
sphere, the visible area is tilted from its position for =0
by (8—6'); here 6=m/2 so that cos(6—6)= (1—1%/2)%
Thus the distance between the farthest visible points is
reduced to D(1—1%/¢?) as measured along the direction
of motion. As measured along the line of sight, perpen-
dicular to the motion, this distance is Dy/c. Thus the
light which reaches the observer from B must leave B
at a time Dy/c? earlier than the light that leaves 4 in
order to arrive simultaneously with the light from 4.
During this time the sphere moves a distance Dv?/c?,

TERRELL

so that the distance between A and B appears to
be D, as seen or photographed by the observer. Thus
the sphere appears uncontracted in the observer’s
photograph.

Physically, the reason that A4 is the farthest visible
point is that light leaving points beyond 4 on the
spherical surface will be intercepted by the motion of
the sphere. Similarly, point B is visible, though on the
far side of the sphere, because light emitted from this
point will not be stopped by the sphere, which moves
out of the path of the light.

STEREOSCOPIC VISION

If stereoscopic vision or photography is to be con-
sidered, the situation becomes more complicated.
Simultaneous observations of direction of a given object
from two observation points constitute a valid means of
measuring distance to the object. Thus, with stereo-
scopic vision, all points will appear to be at the proper
distance even with relativistic speeds. However, what
is seen at a given time is the situation which existed at
an earlier time, and not all parts of the object are seen
at the same earlier time. This produces curious visual
distortions of the sort shown in Fig. 1 at the apparent
positions of S and .§’, constituting shear and contraction
or elongation, depending on the situation. For instance,
an object coming directly toward the observer is seen
in three dimensions to be elongated along its direction
of motion by the ratio [ (14v/¢)/(1—v/c) Jt= M (180°),
and incidentally appears farther away, by the same
ratio, than if the observer had the same velocity as the
object.

At other angles of observation the situation is less
simple to describe. In general, if an observer sees two
points on a stationary object which are at precisely
the same visual angle but at different distances, another
observer at the same point but moving in a different
reference frame will see the two points as M times
farther away and M times farther apart. Here M is
given by Eq. (3). In general, this results in apparent
shear of the object, as seen with stereoscopic vision.
Precisely the same effects would occur with the apparent
perspective of the object, even with nonstereoscopic
vision, if the object were near enough to make perspec-
tive noticeable.

CONCLUSIONS

It has been shown that the Lorentz transformation is
conformal in the angles of observation, so that the
photograph obtained by an observer depends only on
the place and time of taking the picture and is inde-
pendent of the relative motion of observer and object
photographed. This statement must be restricted to
small solid angles in the same way that conformal
transformations preserve shapes only for differential
areas. Thus the visual appearance of an object is in-
variant (except for Doppler shifts of frequency), not
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depending on its (unaccelerated) motion. Effectively,
then, the Lorentz contraction is invisible. Any hopes
of seeing the contraction in a rapidly moving space
vehicle or astronomical body must be discarded.
Although apparent distortion due to rapid motion
can be seen by means of steroscopic vision or photo-
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graphy, it is not of the same type as one might expect
from the Lorentz contraction.

None of the statements here should be construed as
casting any doubt on either the observability or the
reality of the Lorentz contraction, as all the results
given are derived from the special theory of relativity.

PHYSICAL REVIEW VOLUME

116,

NUMBER 4 NOVEMBER 15, 1959

Active Gravitational Mass*

CHARLES W. MisNErR} AND PETER PuTNaM
Palmer Physical Laboratory, Princeton University, Princeton, New Jersey

(Received June 22, 1959)

Tolman states that . . .disordered radiation in the interior of a fluid sphere contributes roughly speaking
twice as much to the gravitational field of the sphere as the same amount of energy in the form of matter.”
The gravitational pull exerted by a system on a distant test particle might therefore at first sight be expected
to increase if within the system a pair of oppositely charged electrons annihilate to produce radiation. This
apparent paradox is analyzed here in the case where gravitational effects internal to the system are un-
important. It is shown that tensions in the wall of the container compensate the effect mentioned by Tolman
so that the net gravitational pull exerted by the system does not change.

I INTRODUCTION

N Newtonian mechanics the equivalence of active

and passive gravitational mass, that is of mass as
a quantity which gives rise to, and as a quantity acted
upon by, gravitational fields, is made obvious in the
form of the familiar equation for the gravitational
potential ¢, namely V¢=4mp, where p is the density of
inertial mass.

However, in relativity theory where the field equa-
tions take the form R,,—3g.,R="T,,, the inference can
sometimes not be drawn so easily. Here not only does
the source term include stresses and momenta as well
as energy, but the equations are nonlinear. The question
presents itself, therefore, to what extent are the distant
gravitational fields as calculated by classical and
special relativity theory the same as those calculated
using general relativity?

The following statement by Tolman suggests that
there are important differences: . . .disordered radi-
ation in the interior of a fluid sphere contributes
roughly speaking twice as much to the gravitational
field of the sphere as the same amount of energy in the
form of matter.”

Such a result would seem to lead to certain paradoxes.
Consider the conversion of a gamma ray, enclosed in a
box, into mass, say an electron-positron pair. This
transformation might be thought to halve the contri-
bution of the mass energy to distant gravitational fields.

* Publication assisted in part by the Office of Scientific Research
of the U. S. Air Force.

T Fellow of the Alfred P. Sloan Foundation during a part of
the period of this work.

1R. C. Tolman, Relativity, Thermodynamics, and Cosmology
(Clarendon Press, Oxford, 1934), p. 272.

However, we shall show here that the active gravi-
tational mass of a system is made up of the energy of
the walls and other material plus the energy of radi-
ation, divided by ¢?, without the added factor of two,
provided that the gravitational fields internal to the
system are weak.

II. ENCLOSED RADIATION

Tolman’s argument is based upon an expression for
the distant gravitational field which involves only the
classical stress-energy tensor T',,. The reasoning applies
to a wide class of cases roughly describable as quasi-
static. Included in such cases are those in which the
matter is confined to some limited region. This region
is considered to be small as compared to the distance
at which its gravitational field is to be measured.
Moreover, within this region the behavior of the system
is not significantly influenced by its own gravitational
field. When these conditions are satisfied, and when
the distant metric field is expressed in a form, ‘

ds?= — (14-2m*/7) (dx*+dy*+dz®)+ (1—2m* /r)d2, (1)

which reveals the mass of the system, m= (c?/G)m*, or
its energy E=mc=(c/G)m*, then Tolman’s argu-
ments? give for the energy of the system the value

me?= (c¢t/G)ym*= f (TA—=T ~T32—TH) (=g (2)

Since the electromagnetic stress-energy tensor has
zero trace, it follows that 7' equals — (T4 T 2?4 T5%).
Therefore according to (2), Tolman argues, the system

2 See Tolman, reference 1, p. 235, Eq. (92.3).



