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When they are satisfied the operator (16.10) may be replaced by the nonsingular
self-adjoint operator

Fuve'r’ 82S0/8gpv8ga-’-r’ + fdx”fdx"'R/"'p' yP XRS50

= 1gl2(gregr + grigre — gigPR) (B,n©' ™)K — 2R, SH0E' ). (16.20)

The computation of the final expression requires use of equations (16.9), the
commutation laws for covariant differentiation, and the easily verified identities

8(/“’)(0"1')-” = - %(8/4(7'-1" + 8#7'.(7'-); (16.21)

St = = 8,(x,X"). (16.22)

Problem 73. Verify equations (16.20), (16.21) and (16.22).

Contracted Bianchi Identities

It has been remarked in Section 3 that when an infinite dimensional invari-
ance group is present the dynamical equations are not all independent of one
another. In the present case, equation (3.14) takes the form

0= [ Si/ogy o) Ry, dx' = 2gP(RW — 1gR) — Pgigr],.  (16.23)

These identities can be obtained by contracting the Bianchi identities (13.38) and
remembering that g#» and gl/2 themselves have vanishing covariant derivatives,

Problem 74. Derive (16.23) from the Bianchi identities.

More Complex Lagrangians

The dynamical equations (16.7) as well as the equations for small disturbances
are of the second differential order and represent covariant generalizations of field-
equation types with which we are already familiar, They should therefore provide
the basis for a satisfactory physical theory, making it unnecessary to look further
for Lagrangians more complicated than that of Einstein’s theory. Indeed, more
complicated Lagrangians can only yield equations of higher differential order,
giving rise to the difficulties which we have already noted in Section 10 concerning
the existence of the vacuum and the positive definiteness of Hilbert space. Never-
theless, results which we shall obtain later in connection with the renormalization
program of the quantum theory lead us to consider such Lagrangians.

At the next level of complexity there are essentially three different possible
Lagrangians, each quadratic in the Riemann tensor :*

Ly = gl/2R?, (16.24)
Ly = g'2R,,R*, (16.25)
Ls = gl2R,,, RP". (16.26)

* A fourth possibility in principle exists, namely Ly = €#*°% R, oA R,<P*. Because of parity
considerations, however, this has no practical interest.
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These do not lead to independent dynamical equations, however. It is found that
only two adjustable parameters are needed to include these Lagrangians in the
total action. Denoting the corresponding action functionals by S, S2, Ss, and
making use of equations (16.2) to (16.6), we easily obtain the following functional
derivatives:

881/8¢,, = g122 g R, ~ 2R#” ~ 2 RR# + }g# R?), (16.27)
852/0g,y = g% R77.r + R¥,7 — RK7Yy — R 1g
— 2 Re, R + } g R, Ro7), (16.28)
8853/0g,, = gL%(2 Rrov7 5, + 2 RFOVT 0 — 2 Rby,, RY77P 4 kgi¥ R, 50 ROTPA),
(16.29)
With the aid of the identities
Rwovr = Rw & — Ruoy_ (16.30)
Rwe?, =} Rw + Rwvr R — Ru, R¥, (16.31)
Rw_, =} R,m (16.32)

which follow from the Bianchi idéntities, expressions (16.28) and (16.29) may be
rewritten in the forms

882/88,, = g1A(R# .7 — R# + §g# R,* — 2 R R,, + $g# R,, R°7), (16.33)
8S3/8g,, = gY2(4R# ;7 — 2R# — 2RFyry R7P + kgt Ryppy RO7PA
— 4R#w¥7 R, + 4R#, R™). (16.34)

We then observe that
8(S1 — 4 Sz + S3)/0g,, = g/%(— 2 Réyr, R77P + §g# Ryppn ROTPA

+ 4R#ovt R, + 4 R4, R — 2gw R, RoT

~ 2RR#» + }g#R?), (16.35)
But this quadratic expression vanishes in four dimensions on account of the alge-

braic identities satisfied by the Riemann tensor. This may be verified in a straight-
forward but tedious manner by multiplying R,,,; R.c,2 by the identity

2 () grgrigregrnght = 0, (16.36)

where the summation is over the 120 permutations of the indices v, ¢, «, %, {, with
the sign chosen according to the eveness or oddness of each permutation.
Therefore we need to consider only two of the three Lagrangians above, and
for simplicity we-choose L; and L. However, instead of introducing each with an
arbitrary coefficient let us consider the case in which they appear in the particular
combination Ls — 3L;. Accordingly, we now replace the action (16.1) by

S, = - Afg”z dx — fg1/2R dx — yu? fglfz(gﬂagvr + ghig" — gig)R,, Ry dx,
/ (16.37)
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in which only a single new parameter p appears, having the dimensions of mass
when % = ¢ = 1. Einstein’s theory is regained in the limit x —> 0.
The dynamical equations to which the new action leads are easily found to be

— W %g2[(R¥ — $g#"R).." — 2R4"(R°T — $g7"R)
+ 38#Rsr(R°" — §g°7R) ~ p2(R¥ — }g*R)] — $Ag%gw = 0. (16.38)

These equations have the remarkable property that when they are linearized
(with A = 0) and the supplementary conditions of Problem 14, case (c), are im-
posed, they reduce to

— il"_z("?”"ﬂw + grTPe — 77/“’1’”"') (D2 — 2) [:]2930.,. =0, (16.39)

which is a generalization of the two-level mass equation of Problem 1, case (d).
The same property persists in fully covariant form for the equations for small
disturbances on an arbitrary background metric satisfying (16.38), provided the
disturbances satisfy the conditions (16.16). We shall not verify this in detail, but
merely file it for future reference in connection with the renormalization program
for quantum gravidynamics.

Lagrangian for the Yang-Mills Field

Turning now to the Yang-Mills field, we choose for its action functional the
covariant generalization of that provided by the Lagrangian (12.29):

S4= ~ ifgllz Fou Fo# dx. (16.40)

Here the generating group is assumed to be compact and simple, with tr(c,cg) =
— ¢28,4, so that all group indices are written in the lower position, while the
coordinate indices are raised and lowered by means of the metric tensor. With the
aid of the easily verified relation

8F,, = 844y, — 84uy.,, (16.41)
we obtain the field equations corresponding to Sa:
0 =0884/04,, = — g2 F,»,. (16.42)
The second functional derivative is given by
82854/8A4,, 84y, = g8yl g7 o7 ~ 8,75 By F Cays Fyliy 8757), (16.43)
where
8ot = 8,5878(x, X'). (16.44)

Supplementary Conditions

In choosing supplementary conditions to be imposed on the small disturbances
we again follow Problems 9, 14, and 15, this time covariantly generalizing part (b).
Rewriting the infinitesimal transformation law (12.19) in the form

8Aqu = [ Ropsrdt¥ v, (16.45)



