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There are reasons for believing that the gravitational constant varies with time. Such
a variation would force one to modify Einstein’s theory of gravitation. It is proposed that the
modification should consist in the revival of Weyl’s geometry, in which lengths are non-
integrable when carried around closed loops, the lack of integrability being connected with
the electromagnetic field. A new action principle is set up, much simpler than Weyl’s, but
requiring a scalar field function to describe the gravitational field, in addition to the g,,,. The
vacuum field equations are worked out and also the equations of motion for a particle.

An important feature of Weyl’s geometry is that it leads to a breaking of the C and T'
symmetries, with no breaking of P or of CT. The breaking does not show itself up with
the simpler kinds of charged particles, but requires a more complicated kind of term in the
action integral for the particle.

1. THE LONG-RANGE FORCES

Long-range forces are those that fall off inversely proportional to the square of the
distance between the interacting bodies, as distinct from short-range forces, that
fall off exponentially. There are two known long-range forces, the gravitational and
the electromagnetic.

The gravitational field is very well explained by Einstein’s theory, which accounts
for it in terms of the curvature of space. This has led people to believe that the
electromagnetic field should also be ascribed to some property of space, instead of
being merely something embedded in space, and thus it would require one to set
up a more general space than the Riemannian space which underlies Einstein’s
theory. The more general space would then account for both the gravitational and
the electromagnetic fields and would provide a unification of the long-range forces.

Soon after the appearance of Einstein’s theory, a solution of the problem was
proposed by Weyl. The curvature of space required by Einstein’s theory can be
discussed in terms of the notion of the parallel displacement of a vector, the trans-
port of a vector around a closed loop by parallel displacement resulting in the final
direction of the vector differing from its initial direction. Weyl’s generalization
was to suppose that the final vector has a different length as well as a different
direction, which is a very natural generalization of Riemannian space.

With Weyl’s geometry there is no absolute way of comparing elements of length
at two different points, unless the points are infinitely close together. The com-
parison can be made only with respect to a path joining the two points, and dif-
ferent paths will lead to different results for the ratio of the two elements of length.
In order to have a mathematical theory of lengths one must set up arbitrarily a
standard of length at each point, and then refer any length that turns up in the

26 [ 403 ] Vol. 333. A. (26 June 1973)

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to 2%
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. STOR

®
Www.jstor.org


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on February 7, 2010

404 P. A. M. Dirac

description of space at some point to the local standard at that point. One then has
a definite value for the length of a vector at any point, but this value changes when
one changes the local standard of length. The standard of length can, of course, be
changed by a factor that varies from place to place.

Consider a vector of length I situated at a point with coordinates z* (1 = 0, 1, 2, 3).
Suppose it is transported by parallel displacement to the point x*+ dx*. Its change
in length & will be proportional to ! and to the 8xz#, so it will be of the form

8l = Ik, Bak. (1.1)

We have some coefficients «, appearing here. They are further field quantities,
occurring in the theory together with the Einstein g, and just as fundamental.
Let us suppose the standards of length are changed so that lengths get multiplied
by the factor A(z), depending on the x’s. Then ! gets changed to I’ = [A(x) and I + &1
gets changed to
U'+8l" = (I+8l) A(x+8x) = (I+81) A(x) + 1A, dxr,
with neglect of second-order quantities, and with A , denoting 0A/0x*. We get

8l = ABI+IA Bk = Al(k,+ ¢, ,) Bxr,

where ¢ =logA. (1.2)
Thus 8l = 'k, Sxk,
with Ky =K, +P , (1.3)

If our vector is transported by parallel displacement round a small closed loop,
the total change in its length will be

8l = [F,

Y24

88w,

where B, =K,,—K, ., (1.4)
and 38# denotes the element of area enclosed by the small loop. This change of
course is unaffected by the transformation (1.3) arising from a change in the
standards of length.

It will be seen that the new field quantities k, appearing in Weyl’s theory may be
taken to be the electromagnetic potentials. They have all the desired properties.
They are subject to the transformations (1.3), which correspond to no change in
the geometry, but a change only in the choice of the artificial standards of length.
The derived quantities F,, have a geometrical meaning independent of the standards
of length and correspond to physically significant quantities, the electric and
magnetic field. Thus Weyl’s geometry provides just what one needs for describing
both the gravitational and electromagnetic fields in geometrical terms.

In spite of these beautiful features of the theory, it was not acceptable to physicists,
because it clashes with the quantum theory. Quantum phenomena provide an
absolute standard of length. An atomic clock measures time in an absolute way,
and if one takes the velocity of light to be unity one gets an absolute standard of
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distance. There is thus no need for the arbitrary metric standards of Weyl’s theory.
One may suppose that under parallel displacement a vector keeps the same length
with respect to these atomic standards and then the variation 8! of equation (1.1)
does not arise.

Weyl’s geometry was rejected by physicists, even by Weyl himself, but some of
the terminology that it introduced was retained. The arbitrary standard of length
at each point was called a gauge. Transformations of this standard were called
gauge transformations. In Weyl’s geometry they gave rise to transformations (1.3)
of the potentials. These transformations of the potentials were still called gauge
transformations after the rejection of Weyl’s theory, when they no longer had
any geometrical meaning.

With the rejection of Weyl’s theory physicists returned to the view that the
gravitational field influences the geometry of space, but the electromagnetic field
is only something immersed in the space established by the gravitational field. This
view provided a satisfactory working basis. But many physicists remained fascinated
by the problem of finding a geometrical interpretation of the electromagnetic field
and so obtaining a unified field theory. Many theories on these lines have been
proposed, but they are all complicated and rather artificial, and are not generally
accepted. Weyl’s theory remains as the outstanding one, unrivalled by its simplicity
and beauty.

2. THE LARGE NUMBERS HYPOTHESIS

From the constants of Nature one can construct some dimensionless numbers.
The important ones are hcfe?, which is about 137, and the ratio of the mass of the
proton to that of the electron, M[m, which is about 1840. There is no explanation
for these numbers, but physicists believe that with increasing knowledge an ex-
planation will some day be found.

Another dimensionless number is provided by the ratio of the electric to the
gravitational force between an electron and a proton, namely e?/G:Mm. This has
a value about 2 x 103, quite a different order from the previous ones. One wonders
how it could ever be explained.

The recession of the spiral nebulae provides an age for the Universe of about
2 x 1010 years. If one expresses it in terms of some atomic unit, say e?/mc3, one gets
a number about 7 x 103, which is comparable with the previous large number.
It is hard to believe that this is just a coincidence. One suspects that there is some
connexion between the two numbers, which will get explained when we have more
knowledge of cosmology and of atomic theory.

One can set up a general hypothesis, which we may call ‘the Large Numbers
hypothesis’, that all dimensionless numbers of this order that turn up in nature are
connected. (See the author’s paper (Dirac 1938).) There is one other such number
appearing in an elementary way, namely the square root of the number of nucleons
in the Universe, which should be included in the scheme.
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Now one of these large numbers is the epoch ¢, the present time reckoned from
the time of creation as zero, and this increases with the passage of time. The Large
Numbers hypothesis now requires that they shall all increase, in proportion to
the epoch, so as to maintain the connexion between them. One can infer that the
gravitational constant @, measured in atomic units, must be decreasing in propor-
tion to ¢~1.

Now Einstein’s theory of gravitation requires that @ shall be constant; in fact
with a suitable choice of units it is 1. Thus Einstein’s theory of gravitation is
irreconcilable with the Large Numbers hypothesis.

The Large Numbers hypothesis is a speculation, not an established fact. It can
become established only by direct observation of the variation of G. The effect is
not too small to be beyond the capabilities of present-day techniques. Shapiro’s
(1968) measurements of the distances of the planets by radar are extremely
accurate, and if G is really varying to the required extent, it should show up in his
observations in a few years time.

In the present paper it will be assumed that the Large Numbers hypothesis is
correct and the question will be faced as to how Einstein’s theory is to be modified
to agree with it.

A simple way of effecting a reconciliation is to suppose that the Einstein equa-
tions refer to an interval dsy connecting two neighbouring points which is not the
same as the interval ds, measured by atomic apparatus. By taking the ratio of
dsg to ds, to vary with the epoch we get ¢ varying with the epoch. The ratio is
sufficiently nearly constant for the modification in Einstein’s theory to be very
small.

With the introduction of two metrices dsy and ds,, we see that the objection to
Weyl’s theory discussed in the preceding section falls away. One can apply Weyl’s
geometry to dsg, supposing that it is non-integrable when transported by parallel
displacement, so that we must refer it to an arbitrary metric gauge to get a definite
value for it. Then dsy gets altered when we make a transformation (1.3) of the
potentials. On the other hand ds, is referred to atomic units and does not depend
on an arbitrary metric gauge and is not affected by a transformation (1.3) of the
potentials.

The measurements ordinarily made by physicists in the laboratory use apparatus
which is fixed by the atomic properties of matter, so the measurements will refer
to the metric ds,. The metric dsy cannot be measured directly, but it shows itself
up through its influence on the equations of motion. It forms the basis of all
dynamical theory, whether the theory is the accurate one of Einstein or the New-
tonian approximation. The relation of the two metrics is exemplified by radar
observations of the planets. Here a distance which is determined by equations of
motion is measured by atomic apparatus.

With the two metrics playing their respective roles there is no longer any
basic objection to Weyl’s theory. In the present paper it will be revived and built
up anew. The equations will all refer, of course, to the metric dsg.
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3. CO-COVARIANT DIFFERENTIATION

The main features of Weyl’s geometry will be briefly reviewed here. Details may
be found in Weyl’s book (1921) or in Eddington’s book (1922).

We deal with transformations of the metric gauge under which any length,
such as ds, gets multiplied by a factor A depending on its position in space, ds’ = A ds.
A localized quantity Y may get transformed according to the law ¥’ = A"Y. Then
Y is said to be of power ». If Y is a tensor and transforms in this way, it is called
a co-tensor. If » is zero it is called an in-tensor. It is then invariant under gauge
transformations.

The equation ds? = g, der de”

shows that g, is a co-tensor of power 2, as the da* are not affected by a gauge
transformation. It follows that g/ is a co-tensor of power — 2. We shall write ,/(—g)
simply as 4/, for brevity. It is of power 4.

A tensor T with various suffixes (here left understood) has a covariant derivative
T.,.In general if Tis a co-tensor, 7, , is not a co-tensor. However, there is a modified
covariant derivative, called the co-covariant derivative and written 7Y ,, which is
a co-tensor.

Let us first take a scalar S of power n. Its covariant derivative S, , is the same
as its ordinary derivative S , and we may write either of these simply as S,. Under
a change of gauge it transforms to

8, = (A"8),, = AnS,,+nAm-12,,8

= A8, +n(k,—«,) S}
from (1.2) and (1.3). Thus
(8,—nk,8) = A(8,—n«,8),

so 8,—n«,S is a co-vector of power n. We define it to be the co-covariant derivative
of &, Sy, =8,—nk,8S. (3.1)
To get the co-covariant derivative of co-vectors and co-tensors we need a modified

Christoffel symbol *I'},, defined in terms of the usual one I';, by
¥, = I’;‘,,—g;/c,—gf/cﬂ+gﬂ,l<“. (3.2)

It is easily verified that *I'y,, is invariant under gauge transformations (see Edding-
ton, equation 86.3).
Let 4, be a co-vector of power » and form

4,,—*I A4,
It is evidently a tensor, since it differs from the covariant derivative 4,., by a
tensor. Tt transforms under a gauge transformation to
A,,-*I,A4,) =2A"4, ,+nA" 1A A4, —*I7, A",
=AM4,,+ n(K,—K,) 4,-*I%, 4,}.
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Thus A,,—m,d,—*I'nA,) =24, —nx,d,—*,4,).
We therefore take A, =4,,—nx,4,~*I'}, 4,

as the co-covariant derivative of 4,. It may be written, according to (3.2),
Ay =A,,—n-1),4,+k,4,—9,c4,. (3.3)
Similarly, for a vector B* of power n we find
Bry, = Brt. —(n+ 1)k, Bt+ kB, — glk, B*. (3.4)
For a co-tensor with various suffixes upstairs and downstairs, we can form its

co-covariant derivative by the same rules, bringing in the appropriate « terms for
each suffix. Note that the co-covariant derivative always has the same power as

the original quantity.
One easily sees that the product law holds for any two co-tensors 7" and U,

(TU)se = T U+ TUy,-

Also g/w*a = O? g/w*tr = 0.

This means we can raise and lower suffixes freely in a co-tensor before carrying out
co-covariant differentiation. Thus we may raise the y in formula (3.3). The result
is formula (3.4) with A# replacing B* and n — 2 replacing n.

The potentials « , do not form a co-vector as they have the wrong transformation
laws (1.3). But the F, defined by (1.4) are unaffected by gauge transformations,

so they form an in-tensor.
We get the co-covariant divergence of a co-vector B* by putting v = p in (3.4).

Thus Bty , = B, ,— (n-+4)x, B, (3.5)

Note that if n = —4, the co-covariant divergence is the same as the ordinary
covariant divergence.

4. SECOND CO-COVARIANT DERIVATIVES
For a scalar 8 of power n, we have
S*/L*V = S*/L:v'— (n_' I)KVS*/I/—I—K/LS*V—Q/LVKUS*O"
Substituting Sy, = S, —nk,S, we get
B sy = Sﬂw—nkﬂwS—nKﬂSV—nKV(S”—nKﬂS)+K,,S*IL+K,LS*,,~—QWK"S*G.

Now 8., = 8,.,, s0
S*/L*V_S*V*/t = —n(KﬂZV—KV:/L)S
=—nF,S. (4.1)

w

Let 4, be a co-vector of power n. We have

Aﬂ*v*o’ = A,u*v:a_nKo'A/A*v_l_ (g/eKo"i_ggK,u“g/pr)Ap*v'l' (ngo"'_ggKv_ngp)A,u*p'


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on February 7, 2010

Long-range forces and broken symmetries 409

A straightforward but lengthy calculation leads to the result

A,u*v*o'_A,u*o'*Vz '@/wzrpA'D (n—l)Em-A/u (4.2)
where

*‘@ﬂvo’p = B/Wrrp + ng(K/LZLT + K/I/KO') + g/w'(Kp:v + KpKv) - gprr(K,u:V + K/tKv)
_g/w(Kp:o"I'KpKrr)+(gp0'g/w_gpvg/w) Kqu' (43)
We may consider *%,,,,, as the generalized Riemann—Christoffel tensor. But it does

not have the usual symmetries for a Riemann—Christoffel tensor. However, we
can put

*Bvoo = *Buep+ 3000 F s+ 910 F = 9po Fyy = 910 Fpo); (4.4)
and then *B,,,, has all the symmetries, namely
*B/Wp =—*Bp,=— >l<B/wf7/t =*B,pe
and also B/Mp+ *Buopy+ B = 0.

Thus it would be appropriate to call *B,,,, the Riemann-Christoffel tensor for
Weyl space. It is a co-tensor of power 2.

The contracted Riemann—Christoffel tensor is
*R/w = *B,uvo'o- = R/w - KﬂZV - KV:,u— g/wKo':O' - 2K,qu + 2g/th0Ka' (45)
It is an in-tensor. A further contraction gives the total curvature
*R = *Ry = R—6k°, 4 6k°k,. (4.6)

It is a co-scalar of power — 2.

5. THE ACTION PRINCIPLE

We get field equations from an action principle with an action that is in-invariant.

It is thus of the form
I=[0Jd%, (5.1)

where 2 must be a co-scalar of power — 4, to compensate for / having the power 4.

The usual contribution to (2 from the electromagnetic field is 1 ¥, F». Tt is of
power — 4, since it can be written F,, F, g#*g’? and each of the I factors is of power
zero and each of the g factors is of power — 2. Thus it is suitable to be included in
the present theory.

We need also a gravitational term in the action. In the usual Einstein theory
we have the term —R in 2. In the present theory R should be replaced by the
co-scalar *B. However, this is of power — 2 and will not do. Weyl proposed instead
(*R)2, which has the correct power — 4, but is too complicated to be satisfactory.
Weyl was able to develop his theory only by specializing it tojone particular gauge,
thereby ruining its most attractive feature.

One can bring the gravitational field into the theory by taking an action principle
in which the equation *R = 0 is assumed as a constraint. The power of *R then
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does not matter. One takes the constraint into account by adding to £ the term
v *R, where vy is a Lagrangian multiplier. y then appears as a new field function.
It is a co-scalar, and it must be assumed to be of power —2 to make y*R of
power —4.

We are led to a scalar—tensor theory of gravitation. The scalar field function is
necessary if one is to avoid the great complications that would arise with Weyl’s
action principle. Such theories of gravitation have been considered previously, in
particular by Fierz (1956) and by Jordan (1959), for the purpose of obtaining a
varying gravitational constant, and by Brans & Dicke (1961), working from Mach’s
principle.

Once one has found the need for a scalar field function, one can very well add
on to the action further terms containing its derivatives, like the previous authors
did. It is convenient to put v = — 2 and consider £ as the basic field variable. It
is a co-scalar of power — 1. We can then add to 2 the term kf*og,, ., which is a co-
scalar of power — 4, k being an arbitrary number. Without substantially increasing
the complication we can add to £ the further term ¢f*, with ¢ another arbitrary

number. We then get the total
I = f{%FﬂyFﬂ"-ﬁz R+ kp*rBy, 4 cf}/die, (5.2)

which may be taken as the action for the vacuum.
We have g%y, = (B*+ px#) (B,+ fr,). With the help of (4.6) we now get

—PPER Ak By, = — FPRAkP1B, + (k— 6) fok K, + 6(B%F), ,+ (2k— 12) BKtf,.

The term involving (#%#),, can be discarded, since its contribution to the action
density is a perfect differential, namely

(/}ZK’M):/&\/ = (ﬁ2’<'u\/),/r
To get the simplest equations for the vacuum we now choose & = 6, so that (5.2)

becomes
I = [{(4F, F®™— B2R + 681f ,+ cf%}d%. (5.3)

o

It will be observed that the action for the vacuum no longer involves the poten-
tials «, explicitly, but only through the field quantities F,,. Thus the action is
invariant under transformations «, = «,+¢_,, and the equations of motion that
follow from the action principle will be unaffected by such transformations. Such
transformations should thus be considered as having no physical significance.

We now have the following transformations that can be applied to our equations:

(1) We may make any transformation of the coordinates.

(2) We may make any transformation of the metric gauge combined with the
appropriate transformation of potentials k, -k, +¢ .

(3) Inthe vacuum we may make a transformation of the potentials « WKyt P,
without changing the metric gauge, or alternatively we may transform the metric
gauge without changing the potentials.

It is important to note that the transformations (3) can in general be applied
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only where there is no matter. We shall see later that there are some simple kinds of
matter for which the transformations (3) are still possible. But in general where
matter is present there will be other terms in the action which may very well involve
the potentials explicitly and so make the transformations (3) impossible.

The general equations of the theory are valid with any choice of the metric
gauge. For practical calculations one chooses a gauge that is convenient for the
work in hand. There are three choices of gauge that are of general interest.

The natural gauge. This involves taking «, = 0 when F,, = 0. The natural gauge
is not well defined when ¥, + 0. It requires only that x, must be of the same order
of magnitude as F,,.

The Einstein gauge. This involves taking f = 1. It gives Einstein’s gravitational
equations when the electromagnetic quantities vanish.

The atomic gauge. This is the metric gauge that is measured by atomic apparatus.

All three gauges are liable to be different. But for the vacuum and for certain
specially simple kinds of matter, one can apply a transformation of type 3 so as
to make the natural gauge coincide with the Einstein gauge, or alternatively with
the atomic gauge. There is no way of making the Einstein gauge coincide with
the atomic gauge. It is just the difference of these two gauges that leads to the
variation of the gravitational constant expressed in atomic units.

6. FIELD EQUATIONS FOR THE VACUUM

We make small variations in all our field quantities g,,, k,, # and calculate the
change in the action integral (5.3) and put it equal to zero.

Let us write
81 = [(3P3g,,+ Q Bk, + 8 5)\d%e. (6.1)

We shall drop the term ¢f%/ from the action density, as it is probably not of im-
portance except for questions of cosmology. The variation of the electromagnetic
term yields (see Eddington, 1922, p. 188)

S(LF, Fr\) = §Em.\8g,,—Jt\[5k,, (6.2)
with neglect of a perfect differential. Here E# is the electromagnetic stress tensor
Ew = tgwF*PF, ,— FreF”, (6.3)
and J*# is the charge—current vector
Jr=Fw, =Y FP,),. (6.4)
Again S(B1B,) = BHNBB,+ BunOB  + B,y

= 2p18B,,+ B.B,\89" + BB, B

= —2(8"), .88 — BBNOY w+ 5B 9\/8Y

= — 2¢O — (BB — 39" B s) O s (6.5)
with neglect of a perfect differential.
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From standard work in Einstein’s theory one has (see Eddington, equations 60.3
and 58.52):
S(R\/) = R,uvs(g'm}'\/) - {g’“’«/S(FﬁV _gzrgtr)},p'
Thus 8(BR ) = SR, 8(g9"\) + 25,9 \&(T fh — giL7s) + 2BR B,
with neglect of a perfect differential. A straightforward calculation now gives, with
neglect of a further perfect differential,

8(fR)) = {*(39" B — B) + 29/ (Bf*). , — 2(BB#)"} /89, + 2BR\/BB.  (6.6)
Collecting together the terms in (6.2) minus (6.6) plus 6 times (6.5) and comparing
with (6.1), we get
Pr = B0 (2RI =g R) — Ag B0, + BB +27 B, ~ 8, (6.7)
Qr = —Jk, (6.8)
S =—2pR—12f4", . (6.9)
The field equations for the vacuum are
Pw=0, Q¢=0, §=0. (6.10)
It should be noted that these equations are not all independent. We have
P = —28°R—120p°., = f3S, (6.11)

so the § equation is a consequence of the P equations.

If one omits the electromagnetic term from the action, it becomes the same as the
action of Brans & Dicke (1961), except that the latter allows an arbitrary value for
the constant k. With £ differing from 6, the vacuum equations are independent,
and thus Brans & Dicke have one more vacuum field equation than the present
theory. See their equation (13). In the absence of matter their 7' = 0, and for & + 6
their (3 + 2w) does not vanish, so the extra equation is [)(4?) = 0.

7. THE CONSERVATION LAWS

The action integral has two general invariance properties, namely, it is invariant
under any transformation of the coordinate system and under any transformation
of gauge. Each of these leads to a conservation law connecting the quantities P#,
@, S defined by (6.1).

Consider first a transformation of coordinates, the point with coordinates a#
being shifted to x#+b#, with b# infinitesimal. Following the method of Eddington,
§61, we get

- Sg,uv = g/wbo',v + gvab(r, »” +g//,ll,0‘bo"

~8f = f,b",

— a a
—- 8k, = K b% ,+ K, b7
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Substituting these variations into (6.1), we get
81 = — [(BPP(9, b0+ G b, ot G0, e 07) + QG174 K, o 07) + 8,07}
= [P, u= 3PP, o0 + (@K o)), = QK ] =SB} b7 iz,

This 81 vanishes for arbitrary &7, so we can put the coefficient of b° equal to zero.
With the help of the formulas

(Pg\/),/t_ %‘P/Wg/w,o"\/ = Pg:/t\/
(see Eddington, equation 51.51), and

(QﬂKﬂ"\/),[L = KO'Q”:/L'J+K0',/LQ/"\/’
this reduces to Pg:,,+/<qQ/‘:ﬂ+FWQﬂ—S,8, = 0. (7.1)
Let us now make a small transformation of gauge, ds’ = (1+A)ds, with A in-

finitesimal. We have
Sg,uv = 2/\9/11}

8 = —Ap
8k, = {log (L +A)} , = A,.
Substituting these variations into (6.1), we get

81 = [{Prag,, + QrA,— SAB} a4
= [{Pry — (@), ,— SBy} A d%.
Putting the coefficient of A here equal to zero, we get
Py-Qt,—-S8f=0. (7.2)

Equations (7.1), (7.2) are the conservation laws. For the vacuum, we see that
(7.2) is the same as (6.11), since Q*., = 0 from (6.8). For the vacuum, (7.1) re-

duces to
Pg:,u"i'Fo'ﬂQ'“_ﬂ_lﬁdPﬁ =0, (73)

which may be considered as the generalization of the Bianci identities.

The conservation laws (7.1), (7.2) hold more generally than for the vacuum,
namely, whenever the action integral can be constructed from the field variables
9> Ko 8 alone. Thus they would hold with the term kg*#f, , in Q, with arbitrary
k. If more field variables are needed to describe any matter that is present, there
will be similar conservation laws with extra terms arising from the extra variables.

8. MOTION OF A PARTICLE

Let the coordinates of the particle be z#, functions of the proper time s measured
along its world-line. Put dz¢#/ds = v#, the velocity vector. We have v,v* = 1, and
v* is a co-vector of power — 1.
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We add to the action the further terms I, + I,, where
L =—mfﬂds, (8.1)
L = e[ 1B o0 ds, (8.2)

m and e being constants. One easily sees that these further terms are in-invariants.
We have
I, = ef(ﬂ—lﬂ/‘ +k,)vrds = ef{(d/ds) (log B) +« vy ds,
and the first term of the integrand here contributes nothing to the action prineciple.
Thus
I, = eflcﬂvl‘ ds. (8.3)
Note that I, is unchanged when one puts x,+ ¢, , for k,, since the extra term is
e f (d¢/ds) ds. So for a particle with the action [, +I,, the transformations (3) of
§ 5 are still possible.
Now make variations 8z# in the 2#. We have (see Eddington, equation 28.1):

2ds 8(ds) = 2¢,,dz*d(82) +9,,,,dz" dz’ 827, (8.4)

or 8(ds) = {g,, 0" d(82")[ds +4g,,, ,v*v” 827} ds. (8.5)

Hence 8L =—m f {89, v A(82”)[ds + 49, , v 827) + f, 827} ds
= m[{d(Bg,,v")[ds — } 59,0, ;0" — f,} 827 s
= mf (9,0 A(Bvm)[ds + BT, v — B,} 827 ds. (8.6)

Also 8L, = ef{/c . d(824)[ds + vk, 527} ds
= ef{ —dk,[ds+vik, .} 827 ds
= efv/‘FM 527 ds. (8.7)
Adding (8.6) and (8.7) and equating to zero the total coefficient of 527, we get
MG 4e A(Bo1)[ds + B, 010 — By} = — vk B,
or m{d(Bvr)[ds + Iy vPve — fr} = eFry,. (8.8)

This is the equation of motion for a particle of mass m and charge e. If e = 0,
the trajectory may be called an in-geodesic.

We may work with the Einstein gauge, and then for the case e = 0 we get the
usual geodesic equation. It follows that the motion of the perihelion of Mercury is
the same with the present theory as with the Einstein theory. Brans & Dicke (1961)
assumed the usual geodesic equation still applies with varying 4. They thus obtained
a different motion for the perihelion of Mercury and were led to postulate an oblate-
ness of the Sun.
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9. INFLUENCE OF THE PARTICLE ON THE FIELD

To make the theory of the particle complete, we should take into account also
the variation of 1, and I, produced by variations 8g,,, 8«,, 84 at a particular field
point, as well as the variations of these field quantities at the point 2# arising from
shifting 2#. There is then a further term dz#dz*8g,, to be included in (8.4), leading
to the further term 4v#v” 8¢, ds to be included in (8.5). We then get

(8L )extra = —mf {3010 Bg,,,+8f} ds.
We would like to express this extra bit of action in the form (6.1), say
(SIl)extra, = f(%Piw Sg/w + Sl 818) */d4x

We can do this with the help of the 4-dimensional 8-function 8,( —z) connecting
a general field point x# with the particle point z~. We get

PPy = —m|pomy 8,(w—z)ds, (9.1)
81y = —mf84(x—z) ds. (9.2)
Similarly, we have (BLy)extra = € f v* 8k, ds
=fQ§8KﬂJd4x,
with Q4 = e[vr8,(w—z)ds. (9.3)

The vacuum field equations (6.10) get modified to
Pwy PP =0, @Q*+@Q4=0, S+8;,=0. (9.4)

The particle gives rise to singularities in the field functions, expressible in terms of
84(x —2). The equations (9.4) should determine the singularities, but there may be
technical difficulties in the application of the equations. We can avoid such dif-
ficulties by replacing the point particle by a particle with a finite size.

The equations of motion that we have obtained for a point particle may be applied
to a dust of particles all moving along together and having e/m varying only slightly
from one particle to a neighbouring one, so that we can have neighbouring particles
keeping almost the same velocity. We can then pass from the dust to a continuous
fluid, and there will be a definite velocity vector v* at each point of space.

Let us label each dust particle by three parameters A;, A,, A;. The z# then become
functions of four variables A;, A5, A3, s, and m and e are functions of the three A’s.
Any field point z* can now be specified by the four variables A;, Ay, A3, s.

On passing to the continuous fluid, we shall have a mass density

py = fm,\d?’/\f By —2)ds
0(A; A, s)
fm/\ By(x— )'()( 1 2x3x°)
(A1 45455)

A9 (ata2a3x0) (9-5)
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Similarly, we shall have a charge density
(A A Ags
oy = fe,l d3Af84(x z)ds = e’\agxlxzxf”x‘); (9.6)

p and o are co-scalars of power —3.
To get the expressions for P¥, §;, @4 for a continuous distribution of matter,

we must multiply the right-hand sides of (9.1), (9.2) and (9.3) by d3A and integrate
over the three A’s. The results are

Py = — porvp,
Sl =—p; (9.7)
Q5 = vto.

These values substituted in (9.4) will then give the field equations for a continuous
distribution of matter. We may multiply bothsides of equation (8.8) by 8,(x —z) d3Ads
and integrate. The result is

pU(por), v + Tl vPv” — B} = o B, (9.8)

This is the equation of motion for a continuous distribution of matter.

We may suppose m, and e, vanish except in a small domain of the A’s. We then
have matter existing only in a small tube. It would represent a particle of finite
size. Its motion will be determined by the equations (9.4), (9.7), (9.8), which do not

involve singularities.

10. SYMMETRY BREAKING

The Weyl interpretation of the electromagnetic field as influencing the geometry
of space and not merely as something immersed in a Riemannian space has a
striking consequence —symmetry breaking. Consider a charged particle and take
a field point P close to its world-line. For simplicity, suppose the coordinate system
to be chosen so that the particle is momentarily at rest.

Now take an element of length I at P and suppose it to be shifted by parallel
displacement into the future, by an amount 8z°. From the fundamental formula,

it will change by 5 — Ik 5
= Ik, 5290.

Here «, will consist mainly of the Coulomb potential arising from the charged
particle. Suppose the sign of the charge is such that ! increases when it is shifted into
the future. With the opposite sign of the charge it will decrease. Now there is no
symmetry between a quantity increasing and the same quantity decreasing. Con-
sequently there is no symmetry between positive and negative charge.

If 7 increases when it is shifted into the future, it decreases when it is shifted
into the past. So there is no symmetry between future and past. But if one changes
the sign of the charge and also interchanges future and past, one gets back to the
original situation.
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Atomic physicists have introduced the operators P for changing the parity,
C for charge conjugation and 7 for time reversal. In elementary theories all these
symmetries are preserved. The present theory does not provide any breaking of
the P symmetry. However, it does break the C and 7' symmetries, while preserving
their product CT'.

Experimentally, all three symmetries are observed to be broken, but the product
PCT is conserved, so far as is known. It would seem that the breaking of the P
symmetry must be ascribed to the short range forces. However, the breaking
of C and of 7', with preservation of C7, is caused by the long-range forces, if they
are handled in accordance with Weyl’s geometry. It would seem that this symmetry
breaking arises from the interaction of the gravitational and electromagnetic fields.
The effect must be small, because gravitational effects are always small in the
atomic domain.

The symmetry breaking applies in the first place to the metric gauge, and the
metric gauge is not directly observable. It shows itself up only in equations of
motion. Thus the symmetry breaking is not an effect that can be directly measured
in the geometry, but it will appear only in equations of motion.

For the vacuum, and for certain simple kinds of matter, such as the particle of
§8 and the continuous matter of §9, one can apply transformations of the type 3 of
§5, and then transformations of the metric gauge can be made independently of
transformations of the potentials. Under these circumstances symmetry breaking
will not show up. It will show up only when a more complicated kind of matter is
present, for which transformations of the metric gauge are coupled to transforma-
tions of the potentials.

As an example of this kind of matter, we may suppose a particle for which there

is a term in the action I, = af[)’—%*/‘ﬂ*ﬂds, (10.1)
where a is a number. This is an in-invariant. It can be written
I, = af (B30, + 2B-2x,, + B-1xrx, ) ds.

The middle term in the integrand here changes sign when one changes the sign of
the potentials, so it is symmetry breaking. Time reversal changes the sign of g,
and this middle term is invariant if one changes the sign of both g# and «,, so it
does not break CT'.

Of course one may use the Einstein gauge f = 1, and then this middle term
vanishes. But symmetry breaking has not then vanished from the theory. Before
one puts f = 1 one must obtain the field equation from the variation of 8, namely
S = 0, and this field equation will still show symmetry breaking. ‘

The breaking of the C and 7' symmetries is a rare event experimentally. It has
been observed only for one particle, the K meson. According to the present theory
we should expect it to be a rare event, because it does not occur for simple particles
consisting of just a mass carrying a charge. There must be some further complication
in the particle, such as an action term like (10.1).


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on February 7, 2010

418 P. A. M. Dirac

11. CONCLUSION

The foregoing theory involves a drastic revision of our ideas of space and time
and the question arises: Why should one believe in it ? Even if the variation of the
gravitational constant is confirmed by experiment, it still will not prove that
Weyl’s geometry is needed to explain the electromagnetic field.

There is one strong reason in support of the theory. It appears as one of the
fundamental principles of Nature that the equations expressing basic laws should
be invariant under the widest possible group of transformations. The confidence
that one feels in Einstein’s theory arises because its equations are invariant under
a very wide group, the group of transformations of curvilinear coordinates in
Riemannian space. Of course even if space were flat, the equations of physics could
still be expressed in terms of curvilinear coordinates and would still be invariant
under transformations of the coordinates, but there would then exist preferred
systems of coordinates, the rectilinear ones, and it would be only the group of
transformations of the preferred coordinates that would be physically significant.
The wider group of transformations of curvilinear coordinates would then be just
a mathematical extension, of no importance for the discussion of physical laws.

The passage to Weyl’s geometry is a further step in the direction of widening the
group of transformations underlying physical laws. One now has to consider trans-
formations of gauge as well as transformations of curvilinear coordinates and one
has to take one’s physical laws to be invariant under all these transformations,
which imposes stringent conditions on them. There is no preferred gauge that one
can restrict oneself to for dealing with physical laws and then consider the other
gauges as just a mathematical extension that the physicist can ignore. The dis-
cussion of §5 did suggest certain gauges that could be specially convenient, but
there is more than one of them, and we should need to have a unique preferred
gauge if we did not have a theory with invariance under all transformations of
gauge.

The theory that has been set up here is intended as the basis of classical mechanics.
The equations are not immediately applicable to the quantum theory. The whole
problem of the passage from classical to quantum mechanics will have to be con-
sidered anew and will have to be adjusted to fit the two metrics dsg and ds,.
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