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In a previous paper (Ann. of Math., Vol. 46, No. 4) one of us developed a
generally relativistic theory, which is characterized as follows:

(1) Group of real transformations of the four coordinates (z;, ---, z,)

(2) As only dependent variable to which everything is reduced we have
the tensor gi; , which is taken there to be complex and of Hermitian symmetry.
W. Pauli noted, that the theory developed on this basis is such that the limita-
tion to the case of the Hermitian tensor is not needed for the formalism.

(3) It was added in proof that it seems natural to assume that the field satisfy
the equations |

(1) I; = 3(I'% — I'ap) = 0.

It was asserted but not proven, that there exist identities which allow us to
adjoin these equations without introducing an impermissible overdetermination.
This assertion was, however, based on an error. The introduction of equation
(1) implies a different derivation of the field equations from the original one and
a (slight) deviation of the latter from the field equations of the first paper.

The mathematical formalism of the theory is preserved here except for an
alteration relative to the rules for absolute differentiation of tensor densities.
Otherwise knowledge of that formalism is assumed here.

§1. The dependence of the infinitesimal parallel translation of the fundamental
tensor. Absolute differentiation of densities.
The connection between the g, and the I, is characteristic for the theory.
It 1s given by the equation:
(2) (gi_k_:a '-:')gik.c = sk P:c = (is P:k = 0.

This determination of the I" from the ¢ has the following property:
If to the tensor g corresponds the translation I'j: according to (2), then to the
tensor §;x = gxi corresponds I's;, = I, .

Proor: If one forms the left side of (2) for the §u and the '}y one gets

gik.c - gok i:a - gia f‘;k;
if we introduce here the g and T, according to the above definition, and exchange
the last two terms we get

Okiva'— GoiTka — GraTai.

This expression vanishes according to our assumption, since it becomes the left
side of equation (2} if we interchange the free indices 7 and k.
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132 A. EINSTEIN AND E. G. STRAUS

ReEMARK: The properiy just established has nothing to do with the assump-
tion that gy and T'je are Hermitian with respecc to the indices 7 and k. It 1s
as possible and as nawvural to consider these quaniities 1o be real but not sym-
meiric; the number of ndepenaent components of g and I 1s then the same as
i the case of Hermitian syminetry. One thus obtaing a tneory which differs
from the previously developed one by the signs of certaun verins only.

Absolute difterentiation of tensor aensities

If we muitiply the left-hand side of (2) by }¢™ we get (see - - -loc. cit) the vecvor

(‘\/—g).u
vV =g
multiplying by 4/ —g¢ we get the vecior density

(V——é)a - 5\/:5(&;- + r:a)o

This we define as the absoiute derivative (v/ —g).« of the scaior density 4/ —g.
Correspondingly we define the absolute derivative of every scaior density p

(3) pia = pa — p 3(I'as + Tia).

From this the rules of differentiation for all tensor densities follow mn a well
known manner, e.g.

(3.1) 0 . = g% e+ g% Tie + ¢° 5 — @™ (I + Tlo).

1t can be easily shown that the equations

(2.1) — 3(Tas + T5a);

G551 = 0,982 51 = 0; ¢4 51 =0

are equivalent here too.

When (2) is satisfied, then the rule of differentiation for tensor densities cor-
responas o the one defined previously.

For a contravariant vecior density ' we get

Aiio = Ao + AT — A 3(Ta, + T
and for the divergence

(3.2) e =Aa+ AT,
also
(3.3) e = A% — A'T,.

Here we see how naturai it is to specialize the field by equation (1). For
on the right-hand sides of (3.2) and (3.3) each term has tensor character, but
according to (1) there wili be only one term.

There are other formal reasons for postulating equations (1) wnich we should
mention here. Like in the theory of symmetrical g, the once contracted cur-
vature tensor plays an important part. The curvature tensor

Riim = Titm — TatTim = Pimit + Tam Tt
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has a concraction with respect to the indices 7 and k& which vanishes 1aentically
in the original theory of gravitation.
Here we get
R:im - r:l.m - P:m.l
which 1n general does not vanish even if (2) is satisfied. Namely, if we trans-
form the right-hand side using the equation following from (2.1)
(2-2) (I‘zz + Prllc).ﬂ - (sz + Pamc).l — O
we get
Rzlm e —(rl.m - rm.l)-
This will not vanish in general, but, it will vanish when the field satisfies equa-

tion (1).
If we contract i m according to the indices 2 and m, we get the tensor

R = Riia = it — TisToy — Thau + ThiTos.

This tensor 1s, in general, not Hermitian, i.e., it is not transformed into 1tself
if we replace the T' by the I" and interchange the indices k andl. (Inthe follow-
ing we shall use the terminology Hermitian in this sense.) For the anti-Her-
mitian part we get:

2Ryt = —Tiaa + Tas + 204 T
considering (2.2) this becomes
Rii = — 3Tt + T,

hence the anti-Hermitian part of Ri; vanishes when (1) and (2) are satisfied,

It would be easy to give further arguments to show that equation (1) is
suitable for the space structure used. However, the above should suffice.
It is now our task to find compatible field equations (on the basis of a variational
principle) so that equations (1) and (2) are part of the field equations.

First we want to make another formal remark, which serves to prepare the
derivation of the field equations. Ifin (3.1) we contract to form g% .aand g+l
then by subtraction we get

(3.4) 3% — 0%50) = gV, — 87T

where g= is the symmetric, g the anti-symmetric part of g">. Hence, if (2)
is satisfied we have identically

(3.5) (6°Ta) i =0

The equations (1) satisfy, therefore, a scalar 1dentity as a resuit of (2). From
equation (3.4) we see that equations (1) and (2) imply

(3.6) Ve = 0.
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§2. Hamiltonian. Field equations
We now choose the Hamiltonian

D = ¢*Pi + AT: + bg'l.a.
P 18 the Hermitianized curvature tensor
Pix = Iira — $(Tian + Tors) — TisTax + I Tas.

The variation is performed according to the variables g*, '}, %', b; which play
the role of independent field variables, where the latter two (purely imaginary)

quantities play the role of Lagrange multipliers. (Neither (1) nor (2) are
assumed satisfied a priori.)

The variation according to the %’ and b; yields the equations
(4) I's=0
(5) g?) = 0.

For the variation according to the I' we use the method which has been

established by Palatini for the case of symmetric g and I'. It is easy to verify
that

6P|'k = (61“.:‘:):5 -ﬂ(‘sria) Y %(6[«;}_:_) "

- —

considering this the variation of the $-integral according to I' (for 6I' which
vanish at the boundaries of integration).

rO — _Qi"c‘.'a + i‘gi::abz an *9:'{“::6:
(6) ) +30" I, 62 — 36" I.6,
L e — 3ute.

The second line of (6) vanishes because of (4). If we contract (6) first according
to k and a, then according to 7 and a we get the two equations

g+t + 3g3i. + 4 =0
gt + g4, — 3 = 0.
Adding these two equations we get
(6.2) g+t + g4, = 0.

Equation (3.4) which was based on the definition of absolute differentiation
yields considering (4) and (5)

(307). 9‘;.‘;0 - G’""" . =

Hence g%%,, and ., vanish and therefore (6.1) implies that %’ vanishes. Equa-
tion (6) reduces therefore to

6.3)] 0¥ .. = 0.

(6.1)
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Equation (5) is implied by equations (4) and (6.3) according to (3.4).
The variation of the $-integral according to the g™ vields

(7) Py — 3(bix — b)) =0
or separating according to svmmetry

(7.1) Py =0

(7.2) P;\,; — 3(bix — b)) =0

or, after elimination of the auxiliary variables b

(7.3) Pai+ Pui+ Pusr = 0.

Vv Vv \Y

Compiling the results of the variation, we get the field equations (which deviate
slightly from (15b) of the first paper)

(8.1) g+ie =0
(8.2) I'i=0
(8.3) Py =0
(8.4) P\.‘/&.t + P(cll.i + P\t;'.k =0

The derivation of these equations from a variational principle (with real 9)
guarantees their compatibility sufficiently.

If we compare the system of equations with that of the previous paper, we
realize that equation (8.2) is introduced at the cost of weakening the equations
which are derived from the curvature. Of the equations (8.4) only three are
independent, while in the original formulation of the theory it corresponded
to six equations; in addition the order of differentiation of the last equation
has been raised by one. The introduction of the last term in the Hamiltonian,
which caused this raise of the degree of differentiation, is necessary in order
that (8.1) will hold, which is obviously the only reasonable determination of
the T' from the g.

Considering equations (8) the question arises, whether (8.3) and (8.4) could not be
replaced by the stronger equation.

9) P = 0.

The question of the justification of such an equation caused us considerable trouble.
This equation would obviously be justified if the equations (9), (8.1) and (8.2) would satisfy
3 independent additional identities. The assumption of the existence of such identities is
strengthened by the fact that for infinitely weak fields such additional identities do indeed
exist.

Namely, if we put (neglecting the special character of time)

ik = dik + vk
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and neglect the square of ¥ as comvared to 1, then we may replace eaquations (8.1), (8.2)
and (9) by the linearized ones

Yik o — T, — Ty = 0
l(r:. - P:-:) =0
P:k,. - ll’:,', — *r:u = 0.
From the first equation we solve for I’
Iy = F=vpia + Yiss + Yer i)

the second eguation then gives
(.Gt' 5)715.6 = 0
Vv
and the third, considering this

(Git E=) - Yiiea + Yie.ck + Yekiei ™ Yeevk = 0.

The latter antisvmmetrized can be replaced considering G; = 0 by

(l-'ril: =) Yitica ™= 0.
A% A

We now have the identity

Usgr — G = 0,
\

If to this identity of the equations for the infinitely weak fields, there would correspond
an identity of the rigorous equations, then the introduction of the stronger eauation (9)
would be justified. A complicated systematic investigation has shown that no such rigor-
ous identity exists,

One may ask, if not despite the absence of these identities, the introduction of equation
(9) may be considered. This, too, has to be answered in the negative on the basis of a
consideration which is applicable also in other cases.

Let us assume that we have a system of equations G = 0 for which there exists a rigorous
identity, which is linear and homogeneous in the equations. Written symbolically

L(G) =0

where L is an operator which is linear and homogeneous in the G. Now L and & can be
developed according to the powers of the field quantities and their derivatives.

(Lo + Ly + -« )Gy +Go 4 +-2) =0
whereby the identity divides according to powers of the field guantities. The first two are
Lo(GGy) = 0
Lo(Ga) + Li(Gy) = 0.
We now assume that we have a parameter solution for @ of the field quantities g
Glegi + g2 + +++) = 0
or

(G + G2 + --)(egs + g + +++) = 0

or

Gilegn + g2 + -+-) + Galegy + etgy 4 +++) + -+« = 0.
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This shal! be identically satisfied in . This yields the first two ecuations.
Gileq) = 0 or Cy(qy) = 0 (linear in g)
Gilege) + Golem) = 0 or Gylge) + Galgy) = 0.

We now apvly our identity, Since we had Lo(Gy) = 0 we get, avolying Ly to the second
equation

(2) Liy(Gal(gy)) = 0.
This is an ecuation of the second degree in g, Sinee we saw above that
(b) Lo(Gs) + LG,) = 0
we know that this oguadratic eoustion is a result of the linear ecuations
Gi(ay) = 0.

If a linear identity exists for the first approximation to which there corresponds no
rigorous identity, (as in the ease of our equations) then we derive eavations (a) as before
but, since the identity (b) will not hold in genersl this eauation is no loneger a result of the
linearized field equatiors Gy (1) = 0. They are therefore sdditions] eavations for the first
aporoximation. In the cese of the field ecuations under ovr consideration they are so
constructed thet esch of their terms is a vroduvet of a symmetric by an antisymmetric
g (v) (or derivetives of these ouvantities).

If we internret the symmetric ¥ 23 an exoression of the gravitation field and the vy
) - vV
as an expression of the electromaenetic field, then for the first approrimation of the field

we get a denendence of the electric of the eravitation field which cannot be brought in
accord with our ohysical knowledee. therefore the considered strenethening of eavations
(8) is out of the ouestion,

The linearized equations which according to (8) hold for an antisymmetric
(electromaenetic) field are

Yikk = 0
V
(Yir 1 4+ Yers + Yiip) oo = 0
v v Vv

If, in the second eauation. the exvression inside the parentheses would itself
vanish, then we would have Maxwell’s equations for empty space, whose solu-
tions therefore satisfy our eovations. The latter seem to be too weak. This,
however, is not a (justified) ebjection to the theory since we do not know to
which solutions of the linecarized eguations there correspond rigorous solutions
which are reeular in the entire svace. It is clear from the start that in a con-
sistent field theory which claims to be complete (in contrast e.g. to the pure
theory of gravitation) only those solutions are to be considered which are regular
i the entire space. Whether such (mon-trivial) solutions exist 1s as yet unknown,

§3. Conditions for the ¢;. which follow from equation (2)

We now wish to investigate what conditions the ¢4 have to satisfy in order
that equations (2) determine the I' uniguely and without singularities.

In the following we write: ¢ = 8it ; ¢ix = @ . At each point we can trans-
— v
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form the coordinates so that s, = s:6i (¢ not an index of summation). Equation
(2) becomes:

(2.3) auTie + @iTax + siT% + iTax = gie (4, k Dot indices of summation).
If welet @ = a = k we get

(2-4) 2sir=i = Gii,is

Hence we must have

(10) 8 # 0

or, in other words, at every point we have for the determinant | s |
(10.1) | a2 | # 0.

This result 1s important since it implies the existence of a “light cone” whose
signature is the same everywhere. The division of the line elements into
spacelike and timelike elements is thereby secured.

If the signature is now chosen as is customary in the theory of relativity,
we can specialize the coordinates further so that

6.‘1,i=],2,3
Six = Smax | >0 and na = o

-551; for 1 = 4

We can also perform a (local) Lorentz transformation so that at our point all
a. except @i = —ay and ay = —ay vanish. We write a;; = a162 5 Gy = Qe .
In the following, we shall use capital Roman indices for 1, 2, and Greek indices
for 3, 4.

Consider first the equations

(2-5) al(ﬁax rgA + €18 Pix) + S(F f.( + Ff«x) = gIix.A

Where all indices are 1, 2 and not all A, I, K are equal. We then get six equa-
tions in six unknowns (ignoring I'y, which we got from (2.2)) with the deter-
minant

r = i | I | Iy rix‘ i | I

(4,1, K) = (1,1, 2)| s 0 0| s a | 0

(1) 2, l) 0 S O S O _a»]

(1,2,2) —a; | @, | 0 | 0 | s s = —45%s* + a})

(2,1,1) s 8 00 |—a! a

(2’ l: 2) ay 0 8 0 8 0

(2, 2, l) 0 —ay S 0 0 8
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[n an analogous manner the determinant of the equations

(2-6) aﬂ(ch r’:a -+ € P:c) -} S(nu r:a -+ Nee r':u) = Ow,a

o~

15

4s8°(—s + a3)’.

Hence:
(11) (s 4+ ai)(—s" + a3) # 0
or
(11.1) g=|gal| #=0.

We now know that the ¢* exist (a fact which we had tacitly assumed before).
We have in fact:

1 ) 1
s + a (sbix +mex); g = —s + a:(-sﬂu + med).

(12) ¢* =

Then, if in the three equations:
gl + gl = Girt
gailki + geelst = Gua,i
gl + gulhe = Qui

we multiply the first by ¢™g* the second by —g*g™ and the third by g'™¢"*
and add, we get:

(2.7) (O“U'uyu + g“g""g.e)l‘ = g"tgakgu.z + g”'g" “Grig — gnxngle.i .

Let us first consider the case
s=al=Lik=K;i=,m=M;a=A

using (12) the left-side of (2.7) becomes

2s

(2-8) (82 + ag)z [(szﬁax darr. + ai €AK éan.)ﬂ.o + 010»2(5416111. + 5uaéax)écc}r'z,x-
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The determinant is

r = | PR | WA rh | Th Tie i
(1, A, M) = (3,1, 1) 5 0 0 a; 0 @G | GiGs | 0
3,1,20 0| 8 | =a2! 0 |—aal © 0 | a;an

(4,1, 1) 0 | —aap| —ayas|{ O —8 0 0 —a3
(4,1, 2)@as| O 0 —a;aai 0 -5 as 0
(4,2 1)laas; O 0 |—aa| 0 a; —s* | 0
(4,2, 2)| 0 | a:a0 | a1 0 —ay | 0 0 I Y
| |
s ai @ma:  aan
(28 ai s -1y —@ A (25
(& +aD)® g6 —aa® —s o (s" + a})'®
@ma: —aaa @i —s
(2s)8
(82 + 03)12 [(82 - ai)z + 4“3 aglz
which gives us the condition
(13) (s — a1)’ + 4aias % 0

or, in other words, we cannot at the same time have

a = =8 and a = 0.

We see immediately that the equations for I'sx and I'}, have the determinants
o (&
(8" + a)'(—=s + a2)*'*
and therefore yield no new inequalities.
In an analogous manner the equations of I'y, have the determinant
(2s)®
(=5 -+ a3)

— a3)’ + 4aiai

5 ((s° + a3)® + 4a} i)
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which gives us the condition
(14) (s + a3)® + 4dala: = 0
or in other words we cannot at the same time have
@ = =18 and a = 0.
The equations for T'ix and Ty, respectively have the determinants:
(2s)®
(=5 + a2)'(s’ + a})°

which again yields no new condition.

If we introduce the covariant expressions (scalar densities)

[(s* + a3)® + 4aial)’

L, = |3ik|
' I Ll 18 L
_ '}(U“C"kz

—
(]
I

S:i8;5r Qprr Qe

I~
w
|

|a.-k |

Then we can sum up the conditions (10), (11), (13) and (14) as follows:
The necessary and sufficient conditions for the existence of a unique non-
singular solution of equations (2) are

(A) IL = 0
(B) g =1+ I+ I; # 0
(C) (I, — L) + I, # 0

(A) and (B) imply in the physically meaningful case the inequalities
19| <0 and [si] <0

where the latter guarantees the existence of a non-degenerate “light cone”
in every point. Equation (C) states that in no point can the two equations
I, = I, and J; = 0 be satisfied simultaneously. In order that this be excluded
it is sufficient that e.g. everywhere in space the antisymmetric field be restricted
by the inequality

| Iy | > | I |
( | | stands here for the absolute values).
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