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This is a gentle, explanatory overview of the fundamentals of gravity waves intended for undergraduate physics
students, curious high schoolers, and brilliant 4th graders, utilizing the traditional linearized form of Einstein’s
field equations.

1. Preliminaries

Following Adler et al., we will denote partial differentiation using a subscripted vertical bar. For example,

∂ f
∂ xµ

= ∂µ f = f |µ

This notation avoids the repeated use of the partial differential operator ∂ while keeping the indices of
differentiated quantities conveniently close to one another (more importantly, it also allows the writer to avoid
having to write the \partial command all over the place).

The Einstein field equations for gravity in the presence of matter (represented by the energy-momentum tensor
Tµν) are given by the set of simultaneous non-linear equations

Rµν −
1
2

gµν R= −
8πG

c4
Tµν (1.1)

where all Greek indices run from 0 to 3 (we will also have occasion to use Latin indices, which run from 1 to 3).
Since Rµν is symmetric there are ten equations in all, but in most cases we’ll have the diagonal condition µ= ν,
leaving just four equations to deal with. Rµν is the Ricci tensor

Rµν = Γ
λ
µλ|ν − Γ

λ
µν|λ + Γ

λ
βµ Γ

β

λν
− Γ λβλ Γ

β
µν (1.2)

and the Ricci scalar is its contracted variant given by R= gµν Rµν = Rλ
λ
. The Γ quantities are the Levi-Civita

connection coefficients, also symmetric in their lower indices, given by

Γ αµν =
1
2

gαβ
�

gµβ |ν + gβν|µ − gµν|β
�

(1.3)

Its contracted form is

Γ αµα =
1
2

gαβ gαβ |µ (1.4)

Lastly, when Tµν is zero we have the free-space field equations

Rµν −
1
2

gµν R= 0

Contraction of this with the metric tensor gµν shows that R= 0, so the field equations reduce to

Rµν = 0 (1.5)

2. The Linearized Field Equations

When gravity is weak (say, far from a field of matter), the metric tensor can be expressed as a slight change from
the flat-space Minkowski tensor ηµν,

gµν = ηµν + hµν , gµν = ηµν − hµν (2.1)
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Here, the Minkowski tensor is represented by the constant matrix







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







while hµν(x) is a symmetric tensor that accounts for the gravitational field. Since we are dealing with weak fields
(|hµν| � 1), all terms having orders of hµν higher than one can be neglected. With this definition of the weak field,
the connection coefficients become

Γ αµν =
1
2
ηαβ

�

hµβ |ν + hβν|µ − hµν|β
�

, Γ αµα =
1
2
ηαβhαβ |µ =

1
2

h|µ (2.2)

Inspection of the definition for the Ricci tensor (1.2) shows that the last two quantities have terms in hµν higher
than first order. Dropping them, we then have the linearized form

Rµν = Γ
λ
µλ|ν − Γ

λ
µν|λ (2.3)

Plugging in the reduced connection coefficents, along with some indexing raising with ηαβ and rearrangement of
terms, we have

Rµν =
1
2
�2hµν −

1
2

�

hαν|α −
1
2

h|ν

�

|µ
−

1
2

�

hαµ|α −
1
2

h|µ

�

|ν
(2.4)

where �2 is the four-dimensional d’Alembertian differential operator

�2 =
1
c2

∂ 2

∂ t2
−∇2

The last two terms in (2.4) look remarkably like divergences which, in general relativity and quantum mechanics,
have a nice tendency to vanish. Indeed, by multiplying either term by ηµν we have what appears to be the
divergence of a legitimate scalar density:

Sµ|µ , where Sµ = hαµ|α −
1
2
ηαµ h|α

Consequently, we can simplify (2.4) enormously if we can set both these terms to zero; that is, we want to set
�

hαν|α −
1
2

h|ν

�

= constant (even zero) (2.5)

This expression is not a tensor quantity, so it will not be true in every coordinate system. But there is a clever
work-around that will solve this problem.

Consider an infinitesimal change of coordinates given by

x̄µ = xµ + ξµ →
∂ x̄µ

∂ xλ
= δµ

λ
+ ξµ|λ (2.6)

where ξµ(x), like hµν is some small arbitrary vector field in which terms like |ξµ|2 and |ξµ| |hµν| vanish. Working
to first order, it can be shown that

ḡµν = gµν − gµα ξ
α
|ν − gαν ξ

α
|µ (2.7)

Similarly, by (2.1) we have
h̄µν = hµν − ξµ|ν − ξν|µ (2.8)

Using these identities we find, after a laborious calculation,
�

h̄αν|ᾱ −
1
2

h̄|ν̄

�

=
�

hαν|α −
1
2

h|ν

�

− �2ξν (2.9)
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where the |ᾱ notation in the derivative stands for ∂ /∂ x̄α. Note that we can now set the last two terms in (2.4) to
zero provided we can find a coordinate change in which

�2ξν = 0 (2.10)

Since ξµ is arbitrary, we assume that we can always find a suitable vector quantity that satisfies (2.10). The two
identities

hαν|α −
1
2

h|ν = constant (including zero) , �2ξν = 0 (2.11)

constitute what is known as the de Donder (or harmonic) coordinate gauge condition for the linearized field,
which effectively sets a total of eight constraints on hµν. Since hµν is symmetric, in four dimensions it has a total
of ten independent terms. The conditions in (2.11) remove eight of these, leaving the linearized field equations
with just two independent terms in hµν. This is a highly significant finding, and we will see that the remaining two
terms define the allowed polarization states of a gravitational wave.

With the de Donder gauge in hand, we see that both the Ricci tensor and the Ricci scalar R vanish in matter-free
space, and that

Rµν =
1
2
�2 hµν = 0 (2.12)

R=
1
2
�2ηµν hµν or �2 h= 0 (2.13)

(We will interpret the latter equation to mean that the trace h= ηµνhµν is identically zero.) These two identities
will be of use later when we examine the matrix representation of the hµν field.

But before moving on, let us reflect on the nature of the de Donder gauge condition. In electrodynamics, the
four-potential Aµ defines the electric and magnetic fields via the covariant expressions

Fµν|λ + Fλµ|ν + Fνλ|µ = 0 ,
�p

−g Fµν
�

|ν =
p

−g Jµ

where Fµν is the antisymmetric electromagnetic tensor

Fµν = Aµ|ν − Aν|µ

and Jµ is the source vector. The electric and magnetic fields are then determined via

~E = − ~∇A0 −
1
c
∂ ~A
∂ t

, ~B = ~∇× ~A

The well-known principle of a local gauge transformation allows us to make a change in the Aµ by adding an
arbitrary gradient that does not affect the electric and magnetic fields. That is, the change

Aµ→ Aµ + ∂µΛ(x) (2.14)

has no effect on the electric and magnetic fields or on Fµν. Compare this with the coordinate change of hµν in
(2.8), which is structurally similar.

To summarize, in electromagnetism we have the four-vector Aµ, which can be varied via a gauge transformation,
while in linearized gravity we have the tensor hµν, which by (2.13) is allowed to vary by a change in the
coordinate system without affecting Rµν. Although gravity and electromagnetism are two very different
phenomena, the underlying gauge invariance of both is at once unmistakable and intriguing.

3. Gravitational Radiation

By utilizing the de Donder coordinate gauge, the linearized gravitational field equations for free space are
simplified to

�2hµν = 0 (3.1)
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We recognize this as a wave equation, with the effects propagating at the speed of light. If gravitational radiation
exists, then it propagates at the same speed as light. We can even go so far as to assume that, like photons of light,
gravitons exist that make up the gravitational field.

Since we are still in a flat Minkowski frame, we can express the d’Alembertian of the hµν field in terms of waves
propagating along some plane in a specified direction. We can therefore write the field in plane-wave form as

hµν = εµν eik·x (3.2)

where εµν is a constant symmetric tensor, with k · x = kµxµ, where kµ is the wave vector. Plugging this expression
into (3.1) (or taking the associated Fourier transform), we immediately have the two identities

kµkµ = 0 , kµεµν = 0

Let us assume we have a gravitational wave moving along the z axis. The associated wave vector can be described
by the simple row vector

kµ =
ω

c
[1 0 0 1]

where ω is the wave frequency. If we represent the tensor εµν as the square matrix

εµν =







ε00 ε01 ε02 ε03
ε01 ε11 ε12 ε13
ε02 ε12 ε22 ε23
ε03 ε13 ε23 ε33







then
kµεµν =

ω

c
[ε00+ε03 ε01+ε13 ε02+ε23 ε03+ε33] = 0

In view of this, let us set all the terms in this vector to zero. Then

ε00 = ε01 = ε02 = ε03 = 0,

ε13 = ε23 = ε33 = 0

This leaves only three non-zero components ε11,ε12 and ε22 in hµν. However, from (2.13) we also know that the
trace h of hµν vanishes, so we must also have ε11 = −ε22. The plane-wave form of hµν thus reduces to

hµν =







0 0 0 0
0 ε+ ε× 0
0 ε× −ε+ 0
0 0 0 0






eikzz (3.3)

where we have given special names for the two non-zero components, which in fact represent the two allowed
degrees of polarization of a gravitational wave. We now ask: what possible effect can the hµν field have upon a
physical body?

4. Gravitational Distortion of a Physical Object

We continue with the results of the previous section, in which we assumed that a gravitational effect moving along
the z axis is imparted by the weak hµν field given by (3.3). Assume that somewhere along this axis we place a
vector Aµ describing some non-point object, such as a thin rod. The length L of this vector is given by the invariant
quantity

L2 = gµν AµAν =
�

ηµν + hµν
�

AµAν

or
L2 = L2

0 + hµν AµAν
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where L0 is the length the object would have in the absence of a gravitational field. Since the gravitational field is
weak, we can approximate the object’s length in the field by

L =
q

L2
0 + hµν AµAν ≈ L0

�

1+
hµν AµAν

2L2
0

�

The difference in length that the object will experience is then δL = L − L0, or

δL =
εµν AµAν eikzz

2 L0

Since there are only two non-zero components in εµν, this reduces to

δL =
ε+
�

(A1)2 − (A2)2
�

+ 2ε× A1A2

2 L0
eikzz (4.1)

Obviously, according to this expression the object will suffer small distortions in length. Assume that the rod is
initially positioned along either the x or y axis. Because of the presence of the oscillatory exponential term, the ε+
component will cause the rod to oscillate in length only along those axes, alternatively expanding and shortening
the rod as the wave passes by. Conversely, if the rod is initially rotated along some arbitary x-y axis, then the ε×
component will cause the rod to alternatively lengthen and shorten along that particular axis.

It should be noted that for objects very far from a gravitating source, the distortion in length will be extremely
small and difficult to detect. Indeed, the recent discovery of gravitational waves emanating from distant black
hole and neutron star mergers involved distortions that are almost unbelievably small, much smaller than the
diameter of a proton. It is a tribute to experimental gravitational-wave physicists that detection and precise
analysis of such events in now possible.

5. Weak-Field Analysis in the Presence of Gravitating Matter

The linearized field equations can be applied to the case where a gravitating source of matter is present. Given
that situation, we need specific information for the energy-momentum tensor Tµν along with some idea of how
that body of matter is behaving (moving, rotating, interacting, oscillating, etc.). For simplicity, we will consider
only the case of a single, static massive body having a fixed size of constant density ρ. Even then the analysis is
not elementary, so we will merely sketch the approach.

We reiterate the Einstein field equations in the presence of matter:

Rµν −
1
2

gµν R= −
8πG

c4
Tµν (5.1)

Linearization gives us

Rµν =
1
2
�2 hµν , R=

1
2
�2 h

so that (5.1) becomes

�2
�

hµν −
1
2
ηµν h

�

= −
16πG

c4
Tµν (5.2)

Let us now define a new field h̃µν given by

h̃µν = hµν −
1
2
ηµν h (5.3)

so that

�2 h̃µν = −
16πG

c4
Tµν (5.4)

We can also write this in raised form as

�2 h̃µν = −
16πG

c4
Tµν
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Taking the divergence, we see that the de Donder gauge condition guarantees that the left side vanishes, while
Tµν|ν also vanishes by virtue of mass-energy conservation.

The simplest possible gravitating object would be a static body composed of cold, catalyzed matter having only
density ρ(x) and pressure P(x) components. In that case the energy-momentum tensor is

Tµν =







c2ρ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P







In view of the magnitude of the coefficient c2, we will assume that the T00 term dominates, so that the
corresponding h̄ii solutions will be small by comparison.

In the presence of matter, we can no longer assume a plane-wave solution to the linearized field equations.
However, we can use a Green’s function to obtain a solution. The Green’s function is defined via

�2 G(~xµ′; ~xµ) = δ(~x ′ − ~x)δ(c t ′ − c t)

or, for the static case,
∇2G(~x ′; ~x) = δ(~x ′ − ~x)

where the arguments are delta functions. We then have

G(~x ′; ~x) =
1

4π |~x ′ − ~x |

which is the textbook definition for a Green’s function in three-dimensional space for the operator ∇2. The
solution to (5.4) is then

h̃µν(~x) = −
16πG

c4

∫

Tµν(~x
′)G(~x ′; ~x) d3~x ′

or

h̃µν(~x) = −
4G
c4

∫

Tµν(~x ′)

|~x ′ − ~x |
d3~x ′ (5.5)

Let us now assume that the gravitating body in question is a static mass of constant density ρ. In that case, (5.5)
integrates immediately to

h̃00 = −
4 GM

c2 |~x ′ − ~x |
or

h̃00 = −
4 GM
c2 r

(5.6)

where r is the distance from the source. This looks remarkably like the expected Schrödinger solution
g00 = η00 + h00 = 1− 2GM/c2r, but our (5.6) has a 4 instead of a 2. This is because we’re still working with h̄00
and not h00. To rectify this, note that we have assumed that the lower diagonal terms Tii and their corresponding
solutions h̄ii will be small compared to h̄00. With these conditions in mind, we then have approximately

h̄= ηµν h̄µν = h̄00 (5.7)

From (5.3), we see that h̄= −h, a condition logically called trace-reversal. But now we have

h̄00 = h00 −
1
2

h= −h or h= −2 h00 (5.8)

so that h̄00 = 2 h00. We then have

h00 = −
2GM
c2 r

(5.9)
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as expected. Since h̄ii ≈ 0, we also have hii = h/2, or hii = h00. Thus, the complete line element for the linearized
field equations is

ds2 = gµν d xµd xν =
�

ηµν + hµν
�

d xµd xν

or

ds2 =
�

1−
2GM
c2 r

�

c2d t2 −
�

1+
2GM
c2 r

�

�

d x2 + d y2 + dz2
�

(5.10)

which agrees with the Schwarzschild line element in an isotropic coordinate system.

5. Comments

By assuming a strictly diagonal energy-momentum tensor Tµν for the linearized field equations, we have
intentionally omitted any contribution from cross terms such as T03, which in fact account for the gravitational
effects of a rotating mass. The interested student is encouraged to pursue this situation further, where she will
discover the approximate metric for a spinning body, first derived by Lense and Thirring in 1918 and subsequently
solved for the exact non-linear case by Kerr in 1963.

We have also omitted any discussion on non-static cases, such as non-radially oscillating masses or the
gravitational effects resulting from colliding or co-rotating binary masses. These problems are the focus of much
current research, given the recent exciting discovery of gravitational waves resulting from merging black holes and
neutron stars, but their treatment goes far beyond the scope of what is presented here. The student should note,
however (and admire) the analytical complexity of such problems, given that the associated field equations
require high-speed numerical computations to obtain even approximate solutions for the linearized case.

Although gravity waves are generally weak, over time they are responsible for the gradual loss of mass-energy
from sources such as co-rotating binary star systems due to the emission of gravitational radiation. As mass is
radiated away, the stars’ orbital distance shrinks with the concurrent decrease in orbital period. The Hulse-Taylor
binary neutron system PSR B1913+16, consisting of a neutron star and a pulsar, has been observed since 1974, its
orbital period being accurately determined thanks to the regular periodicity of the pulsar’s radio emission. After
forty-five years of observation, the calculated change in the stars’ orbital period exactly matches the observations.
The discovery of this star system and its calculated agreement with Einstein’s general relativity theory earned
Hulse and Taylor the 1993 Nobel Prize in physics.

Lastly, the student should note that the linearized field equations were derived many years ago, first by Einstein
himself, who recognized the likely possibility of gravitational radiation. But until the advent of large, highly
sensitive instruments such as LIGO (the Laser Interferometer Gravitational-Wave Observatory) the technology
simply did not exist for the detection of gravity waves.
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