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Of all the symmetries that are expressible in quantum mechanics, perhaps the most beautiful is gauge
invariance. It is completely unlike any of the other garden-variety symmetries (like translation, rotation
and parity), although the symmetry it describes is mathematical rather than physical. For this reason it
seems to have escaped discovery until Weyl came across it in 1918. However, his application of the gauge
principle was initially based on metric geometry, a beautiful but failed idea that eventually evolved into the
phase invariance principle in quantum mechanics. In the following I will sketch the basic idea behind Weyl�s
gauge concept, then show how it is indispensable in the derivation of the Lagrangians describing quantum
electrodynamics and the Higgs mechanism.

1. Gauge Theory Basics
Gauge symmetry would absolutely have been discovered without Weyl; it was just a matter of when.

Although I am not a physics historian, it�s clear that the discovery of gauge symmetry paralleled the develop-
ment of quantum mechanics, and the gauge concept became immediately obvious once physicists recognized
the signi�cance of the combination 	�	 as a measure of probability density. While investigating possible
Lagrangians involving this quantity, it did not require any particular brilliance to see that a change in 	
given by the global gauge transformation

	0 = ei�	

where � is an arbitrary constant, would have absolutely no e¤ect on the Lagrangian. Indeed, 	0 is nothing
but the same wave function 	 with an arbitrary phase factor, and both describe exactly the same physics.
The term gauge transformation is actually a misnomer, because we�re really talking about wave function
phase changes. The �gauge�moniker is a historical carryover from Weyl�s 1918 theory, which involved metric
geometry, not quantum mechanics.

In quantum mechanics, the magnitude of the wave function doesn�t matter; it�s the �direction� that
counts. To be precise, let�s expand 	 about its eigenfunctions

	(x) =
X

aj j(x)

Here, the eigenfunctions  play a role similar to that of ordinary base vectors in linear algebra;  j represents
	 in the �jth�direction, while aj is a complex coe¢ cient that represents the probability amplitude for the
wave function to be found in the jth eigenstate. If 
 is any number (but not an operator), then the two
quantities 	 and 
	 are considered identical �they�re the same thing.

It also doesn�t take any great leap of the imagination to wonder if the related transformation

	0 = ei�(x)	

can be made without changing anything essential. This is called a local gauge transformation, and it is much
more interesting. You can see that any operations involving di¤erentiation of 	0 are now going to bring down
terms involving @��(x), and the Lagrangian will have to absorb these terms somehow if it is to express the
same physics as 	. In fact, symmetries like gauge invariance have been used for some time now to deduce
the proper forms of Lagrangians, whereas in the dim past physicists had to grope around looking for ones
ad hoc to �t the experiments.

In 1918, neither Weyl nor anyone else had the faintest clue about the phase invariance of the wave
function because the wave function hadn�t been discovered yet. Instead, Weyl was investigating gauge
transformations of the metric tensor

g0�� = e�(x)g��
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and the e¤ect of these transformations on Riemannian and non-Riemannian geometry. Weyl noticed that
the magnitude of an arbitrary vector �� would undergo a rescaling under a gauge transformation given by

j�j2 = g���
��� ;

j�0j2 = g0���
���

= e�(x)j�j2

and he wondered if such a regauging would alter any essential physics. In essence, what Weyl was thinking
was that nature might not care if vector magnitude were rescaled from one spacetime point to another
and, taking this one step further, he thought that nature might actually require gauge invariance of metric
spacetime. As you will see, this idea closely resembles the arbitrariness of wave function magnitude and the
very profound fact that its arbitrariness is demanded if electrodynamics is to be part of the formalism. Weyl
went on to discover (or invent) a spacetime manifold that was consistent with this idea, motivated by the
much greater prospect that it would lead to a uni�cation of electrodynamics and gravitation. Weyl failed in
this endeavor, but in 1929 he hit the jackpot when he applied the gauge principle to the newfangled wave
function of quantum theory.

When Weyl �rst proposed quantum mechanical gauge invariance in 1929, he did not know that there
are forces other than electromagnetism and gravity at work in nature. However, it is comforting to know
that before his death in 1955, he was well aware of the strong and weak forces and that they might be
describable by a gauge theory. Today, the gauge principle is arguably the most powerful concept in all of
modern physics. It underlies all of the Yang-Mills theories and is a key component in string theory and its
more recent variant, M theory.

Nevertheless, one cannot but feel a trace of regret on the part of Weyl in his 1929 paper. By the paper�s
end, he admits that the gauge principle applies not to gravity but to quantum mechanics, but there is a
tinge of sadness that things had to work out this way (or maybe it�s just my imagination). After all, the
free-space equations of electrodynamics can be derived from the gauge-invariant Lagrangian

I =

Z p
�gF��F��d4x

which is quadratic in the electromagnetic �eld tensor F�� . By comparison, the Lagrangian for Einstein�s
free-space gravity equations is

I =

Z p
�gR d4x

which is neither gauge-invariant (in the sense that Weyl envisioned) nor quadratic in the integrand. In 1918,
Weyl proposed a Lagrangian that included the square of the Ricci scalar, R2, but neither this nor the scalar
R��R

�� went anywhere, and the theory languished for several years until Einstein himself pounded the last
nail into its co¢ n around 1921. It was a beautiful idea that seemed to have no application in modern physics.

2. Background
Weyl�s gauge idea is closely related to something called Noether�s Theorem. You�ve probably heard of

it, but it�s such a beautiful concept that I�m going to brie�y describe both the theorem and the remarkable
woman who came up with it �Emmy Noether.

Since gauge invariance and Noether�s theorem presuppose some knowledge of extremal principles in
variational calculus, you should also have a basic understanding of the mathematical concepts behind La-
grangians and Hamilton�s Principle. I�m not going to discuss these in any detail, but I�ll lay out the basics
along the way.

3. Emmy Noether
Amalie (Emmy) Noether (pronounced nuhr 0ter, somewhat like Goethe) was born in Erlangen, Germany

on March 23, 1882, the daughter of Max and Ida Noether. Father Max was a well-known mathematician
at the University of Erlangen, and he undoubtedly in�uenced Emmy�s decision to forget about her earlier
interests (linguistics and dancing) and take up mathematics. This was no small feat, as German women at
the time were discriminated against in math and science. But she persevered, and by a process of formal and
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informal class attendance at the university she managed to earn a PhD in mathematics in 1907 (she was the
only doctoral student of the noted mathematician Paul Gordan who, with Rudolph Clebsch, discovered the
Clebsch-Gordan coe¢ cients). Since she was not allowed to teach, she helped her father with his studies and
began publishing papers on her own. In spite of the constant professional discrimination she experienced, she
quickly developed a reputation in Germany as a brilliant algebraist. The noted mathematicians Weyl, Hilbert
and Klein soon took notice of her, and in 1915 Hilbert was able to secure an unpaid position for Noether
at the University of Göttingen. In her �rst few years at the school she worked with Hilbert and others
on Einstein�s gravitation theory. During this time she hit upon a connection between integral invariants
and conservation laws, which she published in July 1918. Her discovery, which is rightly called Noether�s
Theorem, is remarkable in terms of its power and simplicity.

Emmy Noether, 1882-1935

Noether�s dedicated teaching style and caring attitude made her enormously popular at Göttingen, and her
predominantly male students adored her (Hilbert referred to them as Noether Jungen, or Noether�s boys).
However, in spite of her genius Noether had several things going against her. For one, she could not avoid
discrimination by the legitimate mathematical community because of her sex. She was also a Jew, and a
paci�st Jew at that, and when the Nazis took power in 1933, Noether was summarily �red (along with every
other Jewish professor in the country). She taught in secret from her apartment for a few months, and then
was o¤ered a teaching position at Bryn Mawr College in Pennsylvania. By accepting, she joined a long list
of Jewish intellectuals expatriating from Germany to more hospitable climes.

Noether was deeply dedicated to mathematics and teaching, and as a result she ignored her health. She
became overweight, and pictures of her in later years show that she had completely given up caring about
her physical appearance. She taught at Bryn Mawr until her untimely death at age 53 on April 14, 1935,
believed to be the result of a post-operative infection following removal of a large ovarian tumor. Upon
hearing of her passing, Einstein wrote

In the judgment of the most competent living mathematicians, Fräulein Noether was the most
signi�cant creative mathematical genius thus far produced since the higher education of women
began.

Weyl himself travelled to Bryn Mawr to give the memorial address, where he noted that

She was not clay, pressed by the artistic hands of God into a harmonious form, but rather a chunk
of human primary rock into which He had blown His creative breath of life.
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Weyl and Noether had been close friends and colleagues for twenty years (he often good-naturedly referred
to her using the masculine title der Noether in honor of her mathematical abilities), and he was heartbroken
at her passing. In his address he decried the prejudice she had experienced as a female mathematician
and her travails as a Jewish intellectual. He recounted fond memories from their teaching days together at
Göttingen, and confessed sincerely that he considered her to be his superior as a mathematician. Quite an
admission considering Weyl�s own abilities!

Now that you know a little about the woman, let�s look at her theorem.

4. Noether�s Theorem
It has been known since Hamilton�s day that the dynamics of a classical physical system can be obtained

by extremalizing (usually minimizing) the integral quantity

I =

Z
Ldt

where L is the Lagrangian density of the system. In classical physics, the Lagrangian is just the di¤erence
between the kinetic and potential energies. In general relativity, the integral takes on the form of the
four-dimensional invariant scalar quantity

I =

Z p
�g L dx;

(in quantum mechanics and �eld theory the metric determinant term is usually suppressed.) The Lagrangian
is most often some function of the four spacetime coordinates and their �rst derivatives, L = L(x; @�x),or
some �eld, L = L [�(x); @��(x)]. In quantum �eld theory, the Lagrangian retains its composition of kinetic
and interaction terms, but these terms do not have the outward appearance of kinetic and potential energies
(the interaction term often includes a mass term as well). For example, the Lagrangian of a self-interacting
scalar �eld �(x) (for a particle like a boson) might appear as

L =
1

2
@��@

��� 1
2
m2�2 � 1

4
��4 (4.1)

where � is a coupling constant that determines the strength of the interaction of the particle with itself.

Deriving Noether�s Theorem is simplicity itself. Note that any variation of the Lagrangian can be
written as

�L =
@L

@x
�x+

@L

@(@�x)
�(@�x) (4.2)

If we integrate this quantity over all space, we get

�I =

Z
�L dx

=

Z �
@L

@x
�x+

@L

@(@�x)
�(@�x)

�
dx

=

Z �
@L

@x
�x� @�

�
@L

@(@�x)

��
�(x) dx (4.3)

where I have integrated by parts in the last integral. Now, if the system in question does not change under
the variation, then we say that the system has a symmetry associated with that particular variation. This
results by setting (4.2) to zero, from which we get

@L

@x
�x = � @L

@(@�x)
�(@�x)

Plugging this into the integrand in (4.3) and setting it to zero as well, we then have

@L

@(@�x)
�(@�x) + @�

�
@L

@(@�x)

�
�(x) = 0; or

@�

�
@L

@(@�x)
�(x)

�
= 0 (4.4)
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For a �eld �(x), this goes like

@�

�
@L

@(@��)
��

�
= 0 (4.5)

If we identify the bracketed quantity in either (4.4) and (4.5) as a four-density J�, then we have the usual
conservation condition @�J� = 0. Note that the variations �(x) and �� may be completely arbitrary, so we
can say that if a dynamical system has a symmetry of some kind, then there is a corresponding conservation
law associated with that symmetry. This is Noether�s Theorem �it took more space to describe the woman
than it did her theorem!

This is the power of Noether�s Theorem �every conservation law corresponds to a particular symmetry in
the Lagrangian (and vice versa, with quali�cations). This is pretty much the way physicists have approached
Lagrangians since the time she wrote it down �start with a scalar integral expression, get the kinetic terms
in, then the interaction terms, postulate some kind of symmetry, then tinker with the expression until it is
invariant with respect to that symmetry. The development of the Standard Model of particle physics �the
most accurate physical theory mankind has developed to date �re�ects this approach.

I do not know what Noether (a secular Jew) personally thought of her theorem, but I would like to
think that she saw God�s hand in it. It is simply too beautiful and profound for God to have overlooked it
as a working principle when he designed the universe. When it popped into Noether�s mind, I can almost
imagine God thinking to himself �Aha! Now they�re really on to something interesting down there!�

5. The Lagrangian of Quantum Electrodynamics
Armed with these simple but extremely powerful mathematical tools, it is now a simple matter to derive

the Lagrangian of quantum electrodynamics using the gauge invariance concept. To do this, we start with
the free-particle Lagrangian for Dirac�s equation, which is

L = i�hc	
� @�	�mc2		 (5.1)

where 	(x) is the Dirac �eld for a spin one-half particle and 	(x) = 	(x)
0 is the adjoint spinor. Notice
that the leading term represents the kinetic contribution, while the second term brings in the particle�s
mass; there�s no interaction term, because we�re only considering a free particle. The corresponding action
quantity is then

S =

Z
Ldx =

Z �
i�hc	
� @�	�mc2		

�
dx

It is obvious that performing the variation �	y on the Dirac action gives the Dirac equation, [i�h
�@� �mc] 	 =
0. Conversely, taking the variation �	 is almost as easy (you have to do an integration by parts), and you
then get the adjoint Dirac equation, i�h@�	
� +mc	 = 0. So far so good.

Now let�s see what happens when we demand that the Dirac equation be invariant with respect to a
gauge transformation of the kind

	0 = ei�	

where � is some arbitrary, non-zero constant (this is called a global gauge transformation because the it
applies the same factor to the �eld everywhere in space). In what follows, it will su¢ ce to concern ourselves
only with in�nitesimal transformations, so we can write, to �rst order, 	0 = ei�	 = (1 + i�)	. The gauge
variation can then be expressed as �	 = 	0 � 	 = i�	. Similarly, we have �	 = �i�	. Obviously, the
quantity 		 is invariant; also, since the Dirac matrices and � are constants, it is easy to see that �L = 0.
Consequently, the free-particle Dirac Lagrangian is invariant with respect to global gauge transformations.

You might be tempted to think that this is no big deal, but if you go back to Noether�s equation (4.5)
you can see that even with a constant gauge factor there is a conserved quantity. Plugging �	 = i�	 into
(5.1), we see that this quantity is the Lorentz vector 	
�	. It is conventional to tack the electronic charge
e onto the conservation expression, so that @�(e	
�	) = 0. The conservation of electric charge is thus a
consequence of the global gauge symmetry of the Dirac Lagrangian.

It is inevitable that the constant gauge parameter � should be elevated to a function of space, �(x).
How does this change things? From the Dirac Lagrangian, it is easy to see that �L will now involve the term
@��. In order to preserve the condition �L = 0, we must tinker with the Lagrangian to keep it invariant
with respect to what is now called a local gauge transformation, �	 = i�(x)	.
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The simplest approach is just to add a term to the Lagrangian that has a lower index like @�, so we
write

L = i�hc	
� @�	+ e	

�A�	�mc2		 (5.2)

where A�(x) is a new �eld quantity. Its association with the Dirac spinors means that it should be viewed
as an interaction between the �elds, where the charge e acts like a coupling constant. If we now pass the
gauge variation operator through (5.2), we get

�L = i�hc(�i�	)
� @�	+ i�hc	
� @�(i�	) + e(�i�	)
�A�	
+e	
� (�A�)	 + e	


�A�(i�	)

Collapsing terms, we�re left with
�L = 	
�	(e�A� � �hc@��)

This clearly vanishes if the �eld A� varies under a local gauge variation as

�A� =
�hc

e
@�� (5.3)

Of course, this is precisely how the electromagnetic four-vector varies under a gauge variation. In view of
this, we tentatively identify A� as the four-potential of electrodynamics. The Lagrangian (5.2) shows how
this �eld couples with the Dirac �eld 	.

However, we�re not quite �nished. Recall that Lagrangians tend to be composed of kinetic and potential
(or interaction) terms, like L = T � V in classical mechanics. Also, in quantum �eld theory, there often is
a mass term thrown in as well. The kinetic term in the Dirac Lagrangian is 	
� @�	, and the interaction
term is e	
�A�	 (which also de�nes the interaction term for the �eld A�). The �eld 	 also has a mass
term, mc2		. But where are these terms for the A� �eld?

Let�s tackle the mass term �rst. Such a term for the �eld A� would have to be a scalar, and the only
one that might work is something proportional to the quadratic quantity mA�A�. But as you can see for
yourself, the gauge variation of �(A�A�) is non-zero. We are forced to conclude that the �eld A� is massless.
But that�s just �ne, because it again justi�es its identi�cation with the electromagnetic �eld (photons), which
of course is massless.

To get a kinetic term for A� into the Lagrangian, we make a straightforward appeal to the standard
Lagrangian of electrodynamics, which is

L = J�A� +
1

4
F��F

��

where F�� is the antisymmetric stress-energy tensor

F�� = @�A� � @�A�

and J� is the source term. The term F��F
��also has the nice property that it is invariant with respect to

gauge transformations. Notice also that by identifying the Lorentz vector 	
�	 with the source vector J�,
we arrive at yet another suggestive connection between the Dirac Lagrangian and that of electrodynamics.
You now know the famous Lagrangian for quantum electrodynamics:

L = i�hc	
� @�	+ e	

�A�	�mc2		+

1

4
F��F

��

= i�hc	
�
�
@� �

ie

�hc
A�

�
	�mc2		+ 1

4
F��F

�� (5.4)

which describes the behavior of an electron (actually, any spin-1/2 fermion carrying charge e) in the presence
of an electromagnetic �eld. The term in brackets is often abbreviated as

D� = @� �
ie

�hc
A� (5.5)
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and is known as the covariant derivative operator (not to be mistaken with the covariant derivative of
di¤erential geometry). The covariant derivative is a standard trick in quantum �eld theory, and it works not
only for one-dimensional unitary gauge transformations (like the one we have been using), but for higher-
dimensional ones as well. When we want a gauge-invariant expression, we just replace the partial derivatives
with their covariant counterparts and tack on the F��F�� term.

Note, however, that the above Lagrangian does not describe the interactions of bunches of electrons
or their interaction with other particles, like muons or protons. That little problem requires quantum �eld
theory.

And it wouldn�t have been possible without Weyl!

6. The Higgs Mechanism
In the Lagrangian for quantum electrodynamics, we showed that gauge invariance required the mass

term for the electromagnetic �eld A� to vanish. This made sense, because the carriers of the electromagnetic
force, photons, are massless bosons of spin one. By comparison, the carriers of the strong nuclear force,
gluons, are also massless bosons, while the weak force, which is responsible for certain kinds of radioactive
decay, is also described by bosons (with zero spin). But these force carriers (the W� and Z0 particles) have
signi�cant masses (around 80-90 MeV). Now, bosonic quantum �eld theory requires a Lagrangian similar to
that given by (4.1). If gauge invariance is to be considered a fundamental symmetry of all interactions, how
can these bosons have mass, since mass destroys gauge invariance?

In 1961, the British theoretical physicist Peter Higgs of Edinburgh University considered this problem,
and wondered if there was any way that massive particles could be described by a scalar (spin zero) La-
grangian that remains gauge invariant. He discovered that there is indeed a way, and his discovery has since
become famous even though it has not yet been experimentally veri�ed.

Peter Higgs

Consider again the bosonic Lagrangian

L =
1

2
@��@

��� 1
2
m2�2 � 1

4
��4 (6.1)

We now ask what the minimum energy point (the value of the �eld for minimum energy) is for the interaction
term V (�) = 1

2m
2�2+ 1

4��
4. An awareness of this point is critical, because invariably a perturbative approach

must be used to solve the problem (for an explanation, see my other write-up on quantum �eld theory), and
perturbations are always developed around the point of minimum energy. Taking the derivative and setting
it to zero, we have

@V

@�
= m2�+ ��3

= �(m2 + ��2) = 0
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Obviously, one solution is �min = 0. However, there are two more:

�min = �
r
�m2

�

At �rst glance this is meaningless, because these minimal points are pure imaginary, making V a complex
quantity. But there seems to be a couple of ways around this. One is to assume that the self-coupling
constant is negative; the other is to have a negative mass term m2 (which would make the particle mass
imaginary). However, for physical reasons � must have the same sign as the kinetic term, so that option is
out. The second, imaginary mass, seems to be even more bizarre. How can you have imaginary mass?

V(φ)

φ(x)

φ min = vφ min = -v

V(φ)

φ(x)

m2
 > 0 m2

 <  0

The answer involves our expression for the �eld �. As you will shortly see, by rewriting the form of � and
coupling it with an imaginary mass, will give us a Lagrangian having the proper mass sign (an even better
approach is to treat the m2 in (6.1) as just a parameter rather than a mass term). So let�s go ahead and
write the Lagrangian with the �wrong�mass signature:

L =
1

2
@��@

��+
1

2
m2�2 � 1

4
��4 (6.2)

which now gives
�min = �

mp
�

Keep in mind two things about this quantity: one, it is symmetric with regard to space re�ection; that is,
L(�) = L(��); and two, it is invariant with respect to global gauge transformations. Let us now de�ne a
new (real) �eld �(x) using the substitution

�(x) = �(x) + v

where v = m��1=2. Unlike �, the new �eld �(x) has the advantage of including the point of minimum energy.
Plugging this into (6.2), we get the modi�ed Lagrangian

L =
1

2
@�� @

�� �m2�2 � 1
4
��4 � v��3 + 1

4
v4�

This quantity now has the correct mass signature and two self-couplings (the �3 and �4 terms). The last
term is a constant and is irrelevant. Notice, however that this Lagrangian has lost its re�ection symmetry
and is no longer gauge invariant. So what has been gained?

The main point of this exercise is to demonstrate that a perturbation approach would not converge
for the original Lagrangian (6.1) because the true energy minimum cannot be reached for any order of
the perturbative expansion, thus dooming the approximation e¤ort. Secondly, it shows that by allowing
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the true energy minimum to enter the calculation, space symmetry is lost; that is, the Lagrangian has
undergone what is called spontaneously broken symmetry, a rather technical issue that has tremendously
important implications in �eld theory. And thirdly, it shows that the mass term can have the �wrong�sign
and everything can be made right again (if you overlook the additional terms, which represent higher-order
interactions). And, in case you haven�t already noticed, the two Lagrangians describe absolutely the same
physics. Nothing has changed; it�s just that the revised Lagrangian is suitable for perturbative expansion,
while the original is not.

The concept of spontaneously broken symmetry can be visualized by considering the analogy of a vertical
column in structural engineering that is pinned at both ends. The column carries a load that is slowly being
increased. At �rst everything is symmetrical, but when the load reaches a certain critical point, the column
suddenly buckles outward. In its �rst failure mode, the column just bends outward along some vertical plane
whose direction is completely random. Symmetry is lost, but this is in response to the system adjusting to
a non-symmetric point of equilibrium.

The model Lagrangian we have just examined is limited in the sense that there are only two discrete
energy minima at the �eld points �min = �v (see above �gure). A more realistic model would have a
continuum of minima, and this can be achieved by considering a Lagrangian involving two �elds, �1 and �2,
which can be combined as the complex �eld

�(x) = �1(x) + i�2(x)

(imagine the second graph in the �gure being rotated about the origin). Our starting Lagrangian will now
look like

L =
1

2
@��

� @��+
1

2
m2���� 1

4
�(���)2 (6.3)

Notice that this quantity is also invariant with respect to space re�ection and global gauge transformations.
However, it should not be surprising that by having a two-component �eld, we will have to introduce two
new �elds in the description of the complex �-�eld. This is the price one has to pay to make perturbation a
practical approach. However, the theoretical consequences of this apparent distraction are nothing short of
fantastic.

The interaction term in the Lagrangian (6.3) can be expanded in terms of the individual �elds to give

V = �1
2
m2(�21 + �

2
2) +

1

4
�(�21 + �

2
2)
2

The energy minima are now continuous and lie in the circular plane described by

�21min + �
2
2min =

m2

�

We could now write the complex �eld �(x) in terms of two new real �elds �(x) and �(x) and the energy
minimum m2=� as something like

� = � + v + i�

(where v2 = m2=�), but there is another expression that will vastly simplify the calculations when we plug
this expression for � into the Lagrangian. I saw it �rst in Halzen and Martin�s text; it�s

� = (� + v)ei�=v; (6.4)

�� = (� + v)e�i�=v

which is essentially the polar form of � + v + i�. Inserting this into our Lagrangian, we get, after some
reduction,

L =
1

2
[@�� @

�� + @�� @
��]�m2�2 � �v�3 � 1

4
��4 +

1

4
�v4 +

�

2m2
(@�� @

��) �2 +
1

v
(@�� @

��) � (6.5)

The �eld �(x) looks �ne; it has a kinetic term, a mass term with the right sign, and a few couplings with
the �(x) �eld (admittedly, the last two look odd, but they�re just couplings). We interpret the �eld �(x) as
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a massive spin-zero boson. By the same logic, the �(x) �eld must describe a massless boson of zero spin (it�s
called a Goldstone boson in the trade). Unfortunately, there is no such particle in nature!

This is indeed a disaster, and it would seem that all of this has been a colossal waste of time. But not
to fear, as we have one more trick up our sleeve �Weyl�s local gauge symmetry. Let�s replace the partial
derivatives in (6.3) with the covariant derivatives of the previous section (Equation 5.5) and add the F��F��

term. The Lagrangian will then look like

L =
1

2

��
@� �

ie

�hc
A�

�
(� + v)e�i�=v

�
@� +

ie

�hc
A�
�
(� + v)ei�=v

�
+
1

2
m2(� + v)2 +

1

4
�(� + v)4 +

1

4
F��F

��

Grinding this out is straightforward but a bit tedious (although the exponential forms in (6.4) really help
out here), and we end up with

L =
1

2
@�� @

�� �m2�2 � v��3 � 1
4
��4 +

1

4
�v4 +

e2

2�h2c2
(� + v)2A�A

� +
1

4
F��F

�� (6.6)

+
1

2v2
(� + v)2 @�� @

�� +
e

�hcv
A�@

��

This expression still contains the massless Goldstone boson �(x). But wait! Remembering (5.3), we are still
free to specify an arbitrary gauge for the A� �eld. If we pick the gauge

A0� = A� �
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then the last two terms in (6.6) vanish completely, and the Lagrangian goes over to
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You might not have noticed, but a miracle has just occurred �not only has the massless boson � disappeared,

but the photonic gauge �eld A� has acquired a mass (
q
e2m2=2�h2c2�). In physics parlance, we say that the

gauge �eld A� has �eaten�the Goldstone boson and gained weight!

This little lesson in mathematical chicanery is known as the Higgs mechanism. It allows us to assign non-
zero masses to the electroweak bosons W� and Z0 while maintaining the gauge invariance of the Lagrangian,
at the cost of introducing a new �eld �(x), which is known as the Higgs �eld (mediated by the Higgs boson,
which some physicists have dubbed the God Particle). To date, the Higgs boson has not been observed. Its
mass, estimated to be in the range of 117 GeV to 251 GeV, has so far escaped detection because existing
particle accelerators are not powerful enough to elucidate such a massive particle. However, the Large Hadron
Collider, currently under construction at CERN in Switzerland, will almost certainly detect the Higgs, if it
exists. The LHC is scheduled to begin operation in 2007.

Physicists believe the Higgs �eld is behind the mystery of particle mass. Why is a gluon massless, while
an electron has a mass of 0.51 MeV? It is thought that there is a universal Higgs �eld or �ether�permeating
the vacuum that is able to interact with particles and slow down their movement, thus giving them mass.
A useful analogy is sometimes given of a famous movie star who, though wearing dark glasses and wishing
to be left alone, enters a room and is instantly recognized and surrounded by autograph-hungry fans, who
slow her down. The Higgs �eld supposedly interacts with particles in much this way and, by slowing them
down, e¤ectively gives them inertial mass.

Symmetry �Evidence of a Creator?
You are probably aware that the natural world is neither good nor evil, moral or immoral; these labels

simply do not apply to nature. A pack of hyenas ripping apart a baby zebra is no more �bad� than a
rainbow is �good�in any sense of the word �unfeeling nature simply does not care. By this same reasoning,
an accidental universe, bereft of a Creator, would have no use for any kind of mathematical or physical
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symmetry principle; any chaotic arrangement would do nicely, and the creatures living in such a universe
(assuming their existence were even possible) would certainly not care that symmetry principles didn�t exist.
However, we know without question that such symmetries exist in nature and that they o¤er a profound
way of understanding how things work. We humans look upon this and see order and structure, which to us
is a type of beauty. Since only intelligent animals can be truly aware of beauty, it is logical to assume that
humans are a notch higher than the other animals (although I sometimes wonder about this). Therefore, the
existence of mathematical symmetry in nature must point to something profound. Scientists like Einstein,
Dirac and Weyl were intimately acquainted with this beauty, and their minds were deeply moved by it. Dirac
once went so far as to remark that beauty in a mathematical equation is more important than its ability to
reproduce experimental results.

In his excellent (but to my mind, wrong) best-selling 1986 book The Blind Watchmaker, author Richard
Dawkins argues that nature need not have an intelligent designer working behind the scenes because processes
like evolution, which itself is basically a long-term stochastic process, can produce any level of complexity in
living systems if given some raw ingredients and a long enough period of time to work. In Dawkins�view,
the ticking gold watch found at the seashore does not require a watchmaker, just enough matter and time
to put itself together. Statistically and probabilistically, he is correct �quantum-mechanically, there is a
small but �nite probability that a complex system will simply materialize out of nothingness, just as virtual
particles can pop into and out of existence in the vicinity of a charged particle. It�s the same as saying that
if you toss a few million bits of paper into the air, each containing a single Hindu character, eventually they
will land on the ground to form the Baghavad Gita, in iambic pentameter, no less.

However, the probability that such macro-processes will occur, while not precisely zero, is unimaginably
small. For example, the radioactive decay rates of certain nuclei (bismuth-209 and several lead isotopes)
may be so small that their half-lives exceed the known age of the universe by many orders of magnitude.
Dawkins touches on this but neglects to consider the quantum-mechanical implications in terms of actual
human experience (for example, the Copenhagen Interpretation of QM basically says that if you don�t
actually observe something, then you don�t have the right to draw any logical inferences about its existence
or behavior). He also does not mention the fact that, as improbable as such an event might be, when it does
happen, it could happen anywhere in the universe, not necessarily on earth, making its discovery exceedingly
unlikely in the tiny corner of the universe we happen to live in. That is, if a gold watch were to suddenly
spring into existence, it would almost certainly not do so on this insigni�cant planet. He also does not address
the fact that in a strictly evolutionary Dawkins-world there would be no need for mathematical symmetry,
which is absolutely necessary for the watch to exist, much less function. And perhaps most importantly, he
cannot explain the fact that uncaring, statistical evolution must have a driving force to make things �go,�
but evolution by itself cannot provide the driving force.

What is the driving force? Ah, that is the great mystery of life that no one yet understands! Religious
leaders can say only that life is �God�s will,�which is something of a cop-out, but the evolutionists have
absolutely no answer, because unthinking nature does not have the �will� to produce life. It seems far
simpler to me just to assume the existence of a God from the outset; whether it�s Jehovah, Jesus, Allah
or Brahma is strictly a matter of preference or faith. To my way of thinking, if God had done nothing
more in the beginning than create a crude, solitary single-cell microorganism with the innate driving force
to reproduce itself and evolve over time, it would in no way detract from my opinion of him, and he would
be just as worthy of praise. I believe in evolution, but I believe it is just one of God�s tools that allows his
creation to adapt to changing environmental conditions. The Old Testament says that God created man
from dust, but it does not specify exactly how he did this or how long it took. Adam and Eve may have been
nothing more than a couple of highly-evolved australopithecines whom God had endowed with intelligence
and a soul. If you�re a strict literalist, and believe God�s days were exactly 24 (integer) hours long in the
beginning and that Eve sprung from Adam�s rib bone, then there are any number of illogical allegories in the
Old and New Testaments that you�ll need to explain to me before you even begin to start in on evolution.

So what do I conclude from all this raving? That God exists because mathematical symmetry, necessary
for all order and beauty in the world, exists and can be recognized and appreciated by human beings. And
I further believe that Weyl�s gauge symmetry, in recognition of its indispensable role in the development of
modern physics, is the most sublime of all God�s symmetries.
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