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Abstract

A very elementary overview of the original Kaluza-Klein theory is presented, suitable for undergraduates who
want to learn the basic mathematical formalism behind a revolutionary idea that was proposed one hun-
dred years ago, yet today serves as the template for modern higher-dimensional particle and gravity theories.

1. Introduction

In the years immediately following Einstein’s November 1915 announcement of the general theory of relativity
(GTR), numerous attempts were made by Einstein and others to unify gravitation and electromagnetism, the
only forces of Nature then known. These efforts generally involved theories that went outside the formalism of
Riemannian geometry; both Einstein and Elie Cartan investigated the nonsymmetry of the GTR metric and
connection term, while Hermann Weyl developed a non-Riemannian geometry that initially appeared to include
all of electrodynamics as a purely geometrical construct. These efforts failed, as did all similar theories that
were proposed over the following decades.

In 1919, the German mathematician Theodor Kaluza developed a theory that maintained all the formalism of
Riemannian geometry but extended the geometry’s reach by proposing the possibility that Nature in fact utilized
a five-dimensional spacetime, with electromagnetism appearing as a natural consequence of the unseen fifth
dimension (the same idea was actually proposed by the Finnish physicist Gunnar Nordström in 1914, but was
ignored). Kaluza communicated his idea to Einstein in the form of a draft paper, who was initially very
enthusiastic about the concept of electromagnetism springing from the fifth dimension. But despite promises to
assist Kaluza in publishing, Einstein sat on the idea for another two years before he finally recommended
Kaluza’s work for publication.

When finally published in 1921, the immediate reaction to Kaluza’s paper by the physics community was mixed,
but not necessarily because of any strong resistance to a five-dimensional spacetime. After all, only a few years
earlier Einstein had shown that the world had four dimensions, not three, so an added space dimension was not
viewed as entirely absurd. In addition, the apparent invisibility of the extra space dimension was explainable by
assuming that it was too small to observe directly (Kaluza assumed that all physical phenomena was
independent of the fifth coordinate, thus effectively “shielding” the fifth dimension from view). But in order to
work the theory had to assume several arbitrary parameters and conditions that the theory could not explain.
Consequently, in 1926 the Swedish mathematician Oskar Klein reexamined Kaluza’s theory and made several
important improvements that also seemed to have application to the then-emerging quantum theory. Since that
time, theories involving extra hidden (or compactified) dimensions have become known as Kaluza-Klein theories.

2. Notation

The notational history of higher spacetimes is annoyingly confusing (like that of early tensor calculus), mainly
because today one normally denotes the time coordinate with x0 = c t and space with x i (i = 1,2, 3). The use of
x4 to denote the fifth-dimensional space coordinate was obviously problematic, but no true consensus seems to
have ever been reached by the scientific community. Here we will use x5 to denote the fifth dimension, so that
the indices for time and the four space dimensions will go like 0,1,2,3,5, even though this then invites the
question of what happened to the fourth dimension. In addition, on occasion certain non-indexed quantities
(like the metric determinant and the Ricci scalar) in five dimensions will be denoted using a squiggle above the
quantity, so that

p

−g →
p

− g̃, R→ R̃, etc. This notation still does not completely specify the dimensionality of
the terms we’ll be using, but hopefully the context of the formalism will resolve any confusion.
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Furthermore, we will use Latin indices for all 5-dimensional subscripted and superscripted vector and tensor
quantities (A, B = 0,1, 2,3, 5,etc.), while Greek indices will be used to denote all strictly 4-dimensional
quantities (µ,ν = 0, 1,2, 3, etc.). In many cases, quantities may exhibit a mixture of the two notations, such as
gAµ, but utlimately these will all be resolved into their 4-dimensional counterparts.

We will denote ordinary partial differentiation with a single subscripted bar, as in

Aµ|ν = ∂νAµ =
∂ Aµ
∂ xν

while covariant differentiation will be denoted using a double bar, as in

Fλµ||ν = Fλµ|ν − Fλα

�

α
µν

�

+ Fαµ

�

λ
αν

�

where the terms in braces are the usual Christoffel symbols of the second kind.

3. Assumptions and Conventions

The primary assumption of the original Kaluza-Klein theory (other than a fifth dimension actually exists) is the
independence of all vector and tensor quantities with respect to the fifth coordinate. This assumption is due to
Kaluza, who needed to make a more straightforward connection of his theory to the gauge transformation
property of electromagnetism. Consequently, we will have identities such as g̃AB|5 = 0, g̃µν |5 = 0, Aµ|5 = 0, etc.
This has come to be known as the “cylinder condition,” since it implies that 4-dimensional spacetime underlies a
cylindrical fifth dimension whose spacial extent is small enough to render it invisible to the underlying subspace.
It was Klein who first postulated the idea that the fifth dimension is a cylindrical space having a radius roughly
equal to the Planck length (10−35 meter), a concept that conveniently explains why the fifth dimension has
never been directly observed. This same concept has been carried over to string theory, where it partially
explains why that theory has been so difficult to verify experimentally. Indeed, a space having the dimensions of
the Planck length would require energies equivalent to that of the Big Bang to resolve. If not overcome, this
restriction may ultimately relegate string theory to a kind of unprovable religious faith.

The metric in five dimensions can be viewed notationally as g̃AB = ( g̃µν , g̃µ5, g̃55). The metric g̃µν will of course
represent the usual 4-dimensional metric tensor, while the g̃µ5 is a four-vector that is assumed to be
proportional to the electromagnetic four-potential field Aµ (the “bare” metric gµν will serve as the usual metric
in the absence of the electromagnetic field). The remaining quantity g̃55 appears as a superfluous quantity; it’s
usually normalized to unity, and that’s what we’ll do here.

4. A Brief (Very Brief!) Overview of Kaluza’s Metric

Kaluza’s basic idea was to add a fifth dimension to the symmetric metric tensor gµν by adding an additional row
and column to the usual 4× 4 metric matrix with the quantities shown as follows:

g̃AB =















g00 g01 g02 g03 A0
g01 g11 g12 g13 A1
g02 g12 g22 g23 A2
g03 g13 g23 g33 A3
A0 A1 A2 A3 k















where Aµ is the electromagnetic 4-potential in some convenient set of units and k is a constant. Thus, in Kaluza’s
metric the components g5µ represent the electromagnetic field. Using this metric, Kaluza noted that the 5D Ricci
tensor R̃AB and the equations of the geodesics in five dimensions reduce to their usual forms along with terms
that appeared to represent the electromagnetic tensor Fµν = Aµ|ν − Aν |µ in the context of the electromagnetic
Lorentz force. In addition, Kaluza was able to show that the set of Maxwell’s homogeneous equations

Fµν |λ + Fλµ|ν + Fνλ|µ = 0
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is also satisfied in his theory. However, Kaluza’s metric is seriously hindered by the fact that its upper-index form
g̃AB (and the associated metric determinant g̃ = | g̃AB|) is enormously complicated, preventing even the most
basic calculations involving its use. For this reason we will not consider this metric any further, but proceed to
Klein’s modification.

5. Klein’s Revision

In 1926, Klein produced the first of two papers that considerably improved Kaluza’s basic approach. Klein
asserted that the metric actually takes the form

g̃AB =















g00 + A0A0 g01 + A0A1 g02 + A0A2 g03 + A0A3 A0
g01 + A0A1 g11 + A1A1 g12 + A1A2 g13 + A1A3 A1
g02 + A0A2 g12 + A1A2 g22 + A2A2 g23 + A2A3 A2
g03 + A0A3 g13 + A1A3 g23 + A2A3 g33 + A3A3 A3

A0 A1 A2 A3 1















(5.1)

(Klein originally associated a constant k with each Aµ term, but since it’s superfluous we’re ignoring it here). We
can write this revised Kaluza-Klein metric in more compact 2× 2 notation as

g̃AB =
�

gµν + AµAν Aµ
Aν 1

�

A quick calculation shows that the 5D Kaluza-Klein metric determinant is identical to that of its 4-dimensional
counterpart, or g̃ = g (this can be verified by direct expansion of the 5× 5 determinant | g̃AB|, if you have the
energy). This in itself is something of a miracle: Klein’s five-dimensional determinant g̃ is independent of the
vector field Aµ. In addition, the inverse 5D metric also has a simple form:

g̃AB =















g00 g01 g02 g03 −A0

g01 g11 g12 g13 −A1

g02 g12 g22 g23 −A2

g03 g13 g23 g33 −A3

−A0 −A1 −A2 −A3 1+ AµAµ















(5.2)

which, happily enough, gives us the familiar identity g̃AB g̃AD = δD
B.

6. The Lorentz Force in Kaluza-Klein Theory

The geodesic equations associated with the Kaluza-Klein metric provide a tantalizing hint that the theory might
indeed have something to do with electrodynamics. Let us first note that in ordinary four-dimensional
spacetime the Lorentz force associated with a particle of charge q and mass m can be derived by an arbitrary
coordinate variation δxα of the invariant quantity

I =−mc

∫

ds− q

∫

Aµd xµ

Carrying out the variation and setting it to zero gives the familiar expression for the Lorentz force,

d2 xα

ds2 +
�

α
µν

�

d xµ

ds

d xν

ds
=

q

mc
F α
µ

d xµ

ds
(6.1)

The Kaluza-Klein geodesics can be similarly derived from a variation of the single invariant

I =−mc

∫

ds̃ =−mc

∫

g̃AB
d xA

ds̃

d xB

ds̃
ds̃

which leads to
d2 xA

ds̃2 +
â

�

A
BC

�

d xB

ds̃

d xC

ds̃
= 0 (6.2)
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Let us first expand this set of equations for the case A= α. We get

d2 xα

ds̃2 +
�

α
µν

�

d xµ

ds̃

d xν

ds̃
= F α

µ

d xµ

ds̃

d x5

ds̃
+ Aν F α

µ

d xµ

ds̃

d xν

ds̃
(6.3)

Here we see something like the classical Lorentz force for electrodynamics, although at first glance the d x5/ds̃
term would seem to have no classical correspondence (this will shortly be fixed). Proceeding now for the case
A= 5, we have

d2 x5

ds̃2 − Aα

�

α
µν

�

d xµ

ds̃

d xν

ds̃
=−Aµ|ν

d xµ

ds̃

d xν

ds̃
− AλFαλ

d xα

ds̃

d x5

ds̃
− AαAµFνα

d xµ

ds̃

d xν

ds̃
(6.4)

We can use this expression to eliminate the Christoffel term in (6.3) and show that the d x5/ds̃ term has an
interesting interpretation. If we multiply (6.3) by Aα and add the resulting expression to (6.4), we get

d2 x5

ds̃2 + Aµ
d2 xµ

ds̃2 + Aµ|ν
d xµ

ds̃

d xν

ds̃
= 0

But Aµ|νd xν/ds̃ = dAµ/ds̃, so this goes over to

d

ds̃

�

d x5

ds̃
+ Aµ

d xµ

ds̃

�

= 0 (6.5)

Note that the quantity in parentheses is a global constant with respect to the 5D invariant s̃. Let us call this
constant ξ, so that

d x5

ds̃
= ξ− Aµ

d xµ

ds̃
We can then write (6.3) as

d2 xα

ds̃2 +
�

α
µν

�

d xµ

ds̃

d xν

ds̃
= ξF α

µ

d xµ

ds̃

which now strongly resembles the standard Lorentz force. To obtain a precise definition for the constant ξ, we
note that direct expansion of ds̃2 = g̃ABd xAd xB gives the identity ds̃

p

1− ξ2 = ds. Therefore, since

d xα

ds̃
=

d xα

ds

ds

ds̃

we see that the Kaluza-Klein set of geodesics is identical to that of the Lorentz force if we make the identification

ξ=
q

mc

1
p

1+ q2/(mc)2
(6.6)

Indeed, for a sufficiently massive particle ds̃ ≈ ds, and the Kaluza-Klein formalism reproduces the Lorentz force
exactly without complication. However, there is still the possibility that the correspondence is merely a lucky
coincidence. One way to address this issue is to see how the Kaluza-Klein vector Aµ behaves under a gauge
transformation. As is well known in electrodynamics, Maxwell’s equations are invariant under the arbitary
gauge transformation

Aµ→ Aµ +
∂ λ

∂ xµ

where λ is any function of the spacetime coordinates. Both Kaluza and Klein considered an infinitesimal change
in the fifth coordinate,

x5 → x5 = x5 + ζ(xµ), or

δd x5 = d x5 − d x5 = ζ|µd xµ

where ζ is some arbitrary scalar field such that |ζ| � 1. The five-dimensional line element ds̃2, given by

ds̃2 = g̃ABd xAd xB = gµνd xµd xν + 2Aµd xµd x5 + AµAνd xµd xν +
�

d x5
�2
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must be invariant with respect to this variation. The subspace line element gµνd xµd xν is automatically
invariant, so we are left with

δds̃2 = 2d xµd x5 δAµ + 2Aµd xµ δd x5 + 2Aµd xµd xνδAν + 2d x5 δd x5

It is a simple matter to show that δds̃2 vanishes if and only if the variation of the vector Aµ satisfies δAµ =−ζ|µ;
that is,

Aµ→ Aµ − ζ|µ
This is the well-known gauge transformation property of the electromagnetic four-potential, and it strengthens
the identification of the Kaluza-Klein vector Aµ with the electromagnetic field. This, together with the
appearance of a Lorentz force-like term in the geodesic equations, provided both Kaluza and Klein a tempting, if
still tentative, reason to believe that the fifth dimension has something to do with electrodynamics.

7. The Kaluza-Klein Action

It is well-known that Einstein’s path to his theory of general relativity would have been significantly shortened if
he had simply considered the action approach to gravitation, which lies in extremalizing the so-called
Einstein-Hilbert integral

I =

∫

p

−g R d4 x

where R= gµνRµν is the Ricci scalar. Variation of this integral with respect to the metric gives

δ I =

∫

p

−g
�

Rµν −
1

2
gµνR

�

δgµν d4 x

from which we get the celebrated Einstein field equation for free space,

Rµν −
1

2
gµνR= 0

Kaluza and Klein naturally assumed that the action should generalize in five dimensions via

I =

∫

p

− g̃ R̃ d5 x =

∫

p

−g R̃ d5 x (7.1)

where the Kaluza-Klein Ricci tensor is given by

R̃AB =
á

�

C
AC

�

|B
−
á

�

C
AB

�

|C
+
á

�

C
AD

�

â

�

D
BC

�

−
â

�

C
C D

�

á

�

D
AB

�

Regrettably, expansion of this quantity into its 4D terms and those containing Aµ is tedious, and there is little
recourse but to proceed with brute force. Thankfully, the first and last Christoffel terms in R̃AB collapse to their
ordinary 4D counterparts, while the second is simplified by the fact that differentiation with respect to x5 gives
zero. A few of the terms we’ll need are exhibited in the following:

á

�

λ
µν

�

=
�

λ
µν

�

+
1

2

�

AµFλν + Aν Fλµ
�

,
á

�

λ
µλ

�

=
�

λ
µλ

�

+
1

2
AλFλµ,

á

�

5
µ5

�

=
1

2
AλFµλ

á

�

A
55

�

=
á

�

λ
55

�

= 0,
á

�

λ
µ5

�

=
1

2
Fλµ,

á

�

λ
λ5

�

= 0,
á

�

5
µν

�

=
1

2

�

Aµ||ν + Aν ||µ
�

−
1

2
Aλ
�

Aµ Fλν + Aν Fλµ
�

From these expressions (and similar ones that the student can work out for herself), it is straightforward to
evaluate the following:

R̃µν = Rµν −
1

2

�

Aµ Fλν ||λ + Aν Fλµ||λ
�

+
1

4

�

Fλν Fλµ + FλµFλν
�

−
1

4
AµAν Fαβ Fαβ ,
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R̃µ5 =−
1

2
Fλµ||λ −

1

4
Aµ Fαβ Fαβ , eR55 =−

1

4
Fαβ Fαβ

The Ricci tensor, which is
R̃= g̃ABR̃AB = gµν R̃µν + 2 g̃µ5R̃µ5 + g̃55R̃55

can now be evaluated. From R̃= g̃ABR̃AB we get the simple result

R̃= R+
1

4
Fαβ Fαβ (7.2)

Amazingly, the 5D Kaluza-Klein action (7.1) thus reduces to the Einstein-Hilbert-Maxwell action, including the
correct 1/4 factor:

I =

∫

p

−g
�

R+
1

4
Fαβ Fαβ

�

d4 x

∫

d x5 (7.3)

The integral over d x5 would appear to be problematic, since it gives infinity. However, Klein and others
recognized that if the fifth dimension were cylindrical, x5 could be viewed as an angular coordinate having the
period 2πr, where r is the cylinder’s radius, so that the integral becomes a trival constant. Upon further
consideration (which we won’t delve into here), Klein determined that this radius must be on the order of the
Planck constant. Klein thus concluded that the fifth dimension would be strictly unobservable.

The automatic collapse of the Klauza-Klein five-dimensional Lagrangian to four dimensions is an example of
dimensional reduction. This phenomenon has proved a useful tool in modern gauge theories, since a coordinate
transformation in the higher space can appear as a gauge transformation in the subspace.

8. Final Remarks

The Kaluza-Klein model spurred considerable theoretical interest in the fifth dimension in the 1920s, and
numerous physicists (including Einstein) tried to advance the theory, particularly with regard to the problem of
matter and the possibility that gravity and the then-emerging field of quantum mechanics might somehow be
connected in dimensions higher than (3+1). But in spite of its startling formal mathematical beauty, the theory
made no new predictions with respect to gravity or electromagnetism, while the quantum connection seemed to
lead nowhere. By the early 1930s, most researchers had lost interest, and the Kaluza-Klein model joined the
ranks of other failed unified field theories.

In the early 1950s, Pauli tentatively proposed a six-dimensional Kaluza-Klein theory in an attempt to develop a
non-abelian theory that would accommodate the weak and strong interactions. This too failed, and the concept
of higher dimensions was pretty much scrapped until string theory began to make its appearance in the 1970s.
The first string theories described only bosons, and to accomplish this theorists had to assume the existence of
26 spacetime dimensions. Subsequent developments in string theory brought that number down to ten, but
there were still problems involving multiplicity. In 1995, Witten showed that a consistent if not entirely unique
theory of strings involved an additional spacial dimension, bringing the total to eleven.

Nevertheless, the Kaluza-Klein approach shows that compactified extra dimensions lead naturally to locally
gauge-invariant theories. If we view the fifth dimension x5 as an angular coordinate then the smallness of the
space renders this coordinate invisible. The associated four-dimensional space sees this as a local symmetry, and
indeed it is a type of local gauge symmetry, as Kaluza and Klein demonstrated for their assumed four-potential
Aµ. This gauge-invariant aspect of compactified dimensions persists whether the extra dimensions are real (as in
the Kaluza-Klein theory) or related to internal degrees of freedom, like particle spin.
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