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Can Weyl geometry explain acceleration?

John Miritzis
Department of Marine Sciences, University of the Aegean, University Hill, Mytilene 81100,
Greece

E-mail: imyr@aegean.gr

Abstract. We study homogeneous and isotropic cosmologies in a Weyl spacetime. We show
that for homogeneous and isotropic spacetimes, the field equations can be reduced to the Einstein
equations with a two-fluid source. We write the equations as a two-dimensional dynamical
system and analyze the qualitative, asymptotic behavior of the models. We examine the
possibility that in certain theories the Weyl 1-form may give rise to a late accelerated expansion
of the Universe and conclude that such behaviour is not met as a generic feature of the simplest
cosmologies.

1. Introduction
Recent observations regarding the evolution of the Universe have urged the theorists on
cosmology to establish the model of the accelerated expansion and to pursue the origin of
the acceleration. To this end several authors propose a variety of departures from the standard
cosmology. These proposals can be roughly grouped into two categories. First, there exists
a dark energy of unknown nature which is responsible for the accelerating expansion of the
Universe, (cf. [1, 2] for comprehensive reviews and references). Alternatively general relativity
requires a modification at cosmological distance scales [3, 4] (for a pedagogical review see [5]).
Less explored is the idea that the geometry of spacetime is not the so far assumed Lorentz
geometry (see for example [6]). In this circumstance we need not only to look for a new idea,
but also to revisit every type of the old models from a new viewpoint. Weyl geometry is certainly
one candidate to be reviewed and reanalysed. Due to its simplicity Weyl geometry is considered
as the most natural candidate for extending the Riemannian structure. In a Weyl space the
covariant derivative of the metric tensor is not zero and the geometry is determined not only
from the metric gαβ , but also from the Weyl vector field Qµ.

In this paper we study homogeneous and isotropic cosmologies in a Weyl framework. More
precisely, we explore the field equations derived with the constrained variational principle from
the Lagrangian L = R + Lmatter, under the condition that the geometry be Weylian [7]. If
the matter Lagrangian is chosen so that ordinary matter is described by a perfect fluid with
equation of state p2 = (γ2 − 1) ρ2, we show that for homogeneous and isotropic spacetimes, the
field equations reduce to the Einstein equations with a two-fluid source. The first fluid with
equation of state p1 = ρ1 (i.e. stiff matter), stems from the Weyl vector field and the second
fluid describes ordinary matter as mentioned above.

The plan of the paper is the following. In Section 2 we review the constrained variational
principle, obtain the field equations and express them in terms of the Levi-Civita connection.
In Section 3 we show that homogeneous and isotropic models can be interpreted as two-fluid
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models. In Section 4, following the method of Coley and Wainwright in [8], we write the
equations as a two-dimensional dynamical system and analyze the asymptotic behavior of the
models. In Section 5 we consider the two-fluid model resulting from a modification of the
Einstein-Hilbert Lagrangian, cf. (22), and study the possibility of providing a mechanism of
accelerating expansion. Readers unfamiliar with Weyl geometry may find in the Appendix an
exposition of the techniques involved. In this Appendix we also derive the Bianchi identities
and write the Einstein tensor and the Bianchi identities in terms of the Levi-Civita connection.

2. Constrained variations and field equations
We recall that a Weyl space is a manifold endowed with a metric g and a linear symmetric
connection ∇ which are interrelated via

∇µgαβ = −Qµgαβ , (1)

where the 1-form Qµ is customarily called Weyl covariant vector field (see the Appendix for a
full explanation of the notation involved below). We denote by D the Levi-Civita connection of
the metric gαβ .

Weyl geometry can be incorporated a priori in a theory or a posteriori, for example as a
consequence of the variational principle involved. This is the case of the application of the
Palatini method to gravitational Lagrangians of the form L = f (R) [9, 10], where it turns out
that Qµ = ∂µ ln f ′ (R). The Palatini variational principle leads to the field equations

f
′
R(µν) −

1
2
fgµν = 0, (2)

and taking the trace of (2) we find

f
′
(R) R = 2f (R) . (3)

This equation is identically satisfied by the function

f (R) = R2, (4)

apart from a constant rescaling factor. We see that the Palatini method does not accept general
Lagrangians of the form L = f (R) , but forces the theory to be purely quadratic. Accordingly
the field equation (2) is

Rαβ − 1
4
Rgαβ = 0, (5)

provided that R �= 0. Observe that the scalar curvature is undetermined because (5) is traceless,
which is another peculiarity of the Palatini method. However, the quadratic solution (4) to
the trace equation (3) is not the only possibility. Given an arbitrary differentiable function
f, equation (3) can be regarded as an algebraic equation to be solved for R. The situation is
even worse if matter fields are included in the Lagrangian L = f (R). In that case the stress-
energy tensor no longer satisfies the conservation equation. The remedy is to define a new
stress-energy tensor which is conserved (see [11] for the curvature squared Lagrangian, [9] for
an 1/R correction and a generalization in [12]). However, the physical interpretation of this
generalized conservation law is put in doubt. In the weak field limit the equation of motion of
test particles derived from the ‘conservation equation’ exhibits undesirable terms which disagree
with Newton’s law [12]. We argue that the Palatini device suffers from serious problems and
leads to inconsistencies when applied to general Lagrangians for the construction of a gravity
theory (see for example [13, 14] for a thorough critique of the Palatini device).
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In [7] it was shown that a consistent way to incorporate an arbitrary connection into the
dynamics of a gravity theory is the so-called constrained variational principle. According to
this method one adds to the original Lagrangian a constraint with suitable Lagrange multipliers
(see also [15]). To outline the method, consider the most general higher order Lagrangian with
general matter couplings. For an arbitrary symmetric connection Γγ

αβ we introduce the difference

tensor between Γγ
αβ and the Levi-Civita connection

{
γ
αβ

}
Cγ

αβ = Γγ
αβ −

{
γ
αβ

}
.

The constrained Palatini variation is defined by adding to the original Lagrangian the following
term as a constraint (with Lagrange multipliers Λ)

Lc (g, Γ, Λ) = Λ µν
ρ

[
Γρ

µν −
{

ρ
µν

}
− Cρ

µν

]
. (6)

For instance, in Riemannian geometry (6) takes the form

Lc (g, Γ, Λ) = Λ µν
ρ

[
Γρ

µν −
{

ρ
µν

}]
,

while, in Weyl geometry

Lc (g, Γ, Λ) = Λ µν
ρ

[
Γρ

µν −
{

ρ
µν

}
− 1

2
gρσ (Qνgµσ + Qµgσν − Qσgµν)

]
.

We then express all the covariant derivatives appearing in the Lagrangian in terms of the
connection Γ, and vary the resulting action with respect to the independent fields g, Γ, Λ
and matter fields collectively denoted by ψ.

In [7] it was shown that application of the constrained variational principle to general
Lagrangians of the form L = f (R) , in the context of Weyl geometry, yields the field equations
obtained via the metric variation in Riemannian spaces with a source tensor depending on the
Weyl vector field. The simplest theory that can be constructed with the constrained variational
principle is obtained from the Lagrangian L = R.1 The field equations are (see equations (30)
and (31) in [7])

G(µν) = −∇(µ Qν) + QµQν + gµν (∇αQα − QαQα) =: Mµν . (7)

If we express the tensor Mµν in terms of the quantities formed with the Levi-Civita connection
D and take into account of (A.8), the field equations become

◦
Gµν=

3
2

(
QµQν − 1

2
Q2gµν

)
. (8)

In the case of integrable Weyl geometry, i.e., when Qµ = ∂µφ, the source term is that of a
massless scalar field. Taking the divergence of (8) and using the Bianchi identities (A.10) we
conclude that

DµQµ = 0. (9)

1 A theory with a first order dependence of the Lagrangian on the scalar curvature is not gauge invariant (cf.
(A.1)). In his original theory, Weyl postulated that the natural gauge is determined by the condition R = 4λ,
where λ is a constant. Later, in the paper in 1921 [16], he considered a first order Lagrangian as an alternate and
extension of his original theory.
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3. A two-fluid model
In this paper we will be concerned with spatially homogeneous and isotropic spacetimes.
Therefore we have to make the assumption that Qµ is hypersurface orthogonal. That means that
Qµ is proportional to the unit timelike vector field nµ which is orthogonal to the homogeneous
hypersurfaces,

Qµ =: qnµ, Q2 = QµQµ = −q2.

Formally the field equations (8) can be rewritten as

◦
Gµν= (ρ1 + p1)nµnν + p1gµν , (10)

with
ρ1 = p1 =

3
4
q2, (11)

and we see that the equation of state of the q−fluid corresponds to stiff matter. For spatially
homogeneous and isotropic models, the field equations (10) become the system of the equations:
the Friedmann equation2 (

ȧ

a

)2

+
k

a2
=

1
4
q2,

and the Raychaudhuri equation

2
ä

a
+

(
ȧ

a

)2

+
k

a2
= −3

4
q2.

Equation (9) becomes

q̇ + 3
ȧ

a
q = 0,

which implies that

q =
C

a3
,

where C is a constant. Therefore the energy density and pressure of the q−fluid evolve as a−6.
In the following we assume that ordinary matter is described by a perfect fluid with energy-

momentum tensor,
Tµν = (ρ2 + p2) uµuν + p2gµν , (12)

where uµ denotes the fluid velocity. Although conceptually different, uµ and ηµ coincide in the
case of spatially homogeneous and isotropic spacetimes, i.e.,

Qµ = quµ, Q2 = QµQµ = −q2.

Therefore we are dealing with a two-fluid model with total energy density and pressure given by

ρ = ρ1 + ρ2, p = p1 + p2, (13)

respectively, where
p1 = ρ1, p2 = (γ2 − 1) ρ2, (14)

i.e., γ1 = 2 and γ2 < γ1.

2 We adopt the metric and curvature conventions of [17]. Here, a (t) is the scale factor, an overdot denotes
differentiation with respect to time t, and units have been chosen so that c = 1 = 8πG.
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The Bianchi identities applied to the equations derived from the whole Lagrangian L =
R + Lmatter imply that the total energy-momentum tensor is conserved, and therefore a non-
trivial interaction between the two fluids is induced. However, the energy-momentum of ordinary
matter is expected to be conserved, although this fact does not follow from the field equations.
If the condition DµTµ

ν = 0 is satisfied, then the Weyl fluid is also conserved due to (9).
It is necessary to make an assumption about the interaction between the two fluids (cf [8]),
otherwise the field equations are an underdetermined system of differential equations. The
simplest assumption is that the energy-momentum of each fluid is separately conserved, so that
the two fluids do not interact. We restrict our analysis to this case and refer to [18] for more
general situations.

The field equations take the final form(
ȧ

a

)2

+
k

a2
=

1
3

(ρ1 + ρ2) (15)

ä

a
= −1

6
[4ρ1 + (3γ2 − 2) ρ2] (16)

ρ̇1 = −6ρ1
ȧ

a
(17)

ρ̇2 = −3γ2ρ2
ȧ

a
. (18)

It is well known that the field equations for one fluid can be written as a two-dimensional
dynamical system for the Hubble variable H := ȧ/a and the density parameter Ω := ρ/3H2.
As mentioned in [17], a drawback of this analysis is that it does not give a complete description
of the evolution for closed models. In fact, at the time of maximum expansion the Hubble
parameter becomes zero and therefore, the time coordinate defined in [17] p. 58, cannot be used
past the instant of maximum expansion. Instead, we deal with closed models by defining the
compactified density parameter ω, (see [19])

Ω =
1

tan2 ω
, (19)

or

ω = arctan

(√
3H
√

ρ

)
, with − π/2 ≤ ω ≤ π/2.

We see that ω is bounded at the instant of maximum expansion (H = 0) and also as ρ → 0, in
ever-expanding models.

4. Phase plane analysis
We now adopt the Coley and Wainwright formalism for a general model with two fluids with
variable equations of state (cf. [8]). Assuming that γ1 > γ2 and γ1 > 2/3, we define the
transition variable χ ∈ [−1, 1]

χ =
ρ2 − ρ1

ρ2 + ρ1
(20)

which describes which fluid is dominant dynamically. The total density parameter Ω = Ω1 + Ω2

can be compactified as in (19) and the evolution equation of the variable χ is obtained by
applying the conservation equation to ρ1 and ρ2. Defining a new time variable τ by

d

dt
=

3 (γ1 − γ2)
2

√
ρ

3
1

cos ω

d

dτ
,
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Figure 1. The invariant sets and equilibrium points of (21)

and with the same kind of manipulations as in [8], one obtains the following dynamical system

dω

dτ
= −1

2
(b − χ) cos 2ω cos ω

dχ

dτ
= (1 − χ2) sin ω, (21)

where the constant b is
b =

3 (γ1 + γ2) − 4
3 (γ1 − γ2)

> −1.

In our case, we always have γ1 = 2.
The phase space of the two-dimensional system (21) is the closed rectangle

D = [−π/2, π/2] × [−1, 1]

in the ω − χ plane (see Figure 1).
By inspection we can see that the line segment {(ω, χ) ∈ D : ω = π/4} is an invariant set of

(21). It consists of three trajectories, the line segment

{(ω, χ) ∈ D : ω = π/4, −1 < χ < 1}

and the equilibrium points (π/4,−1) and (π/4, +1) . Similarly we can specify the following
invariant sets.

ω = −π/2 contracting empty models Ω = 0, H < 0
χ = −1 one-fluid models Ω2 = 0
χ = +1 one-fluid models Ω1 = 0
ω = π/4 expanding flat models Ω = 1, H > 0
ω = −π/4 contracting flat models Ω = 1, H < 0
ω = π/2 expanding empty models Ω = 0, H > 0
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It is easy to verify that the equilibrium points lie at the intersection of these sets. The equilibrium
points customarily denoted as F+

1,2, F−
1,2, M+, M− are

F+
1,2 : ω = π/4 expanding flat model Ω = 1, k = 0, H > 0

F−
1,2 : ω = −π/4 contracting flat model Ω = 1, k = 0, H < 0

M+ : ω = π/2 expanding Milne model Ω = 0, k = −1, H > 0
M− : ω = −π/2 contracting Milne model Ω = 0, k = −1, H < 0

and the subscripts indicate which fluid survives. Each of these eight equilibrium points
corresponds to an exact solution of the Einstein equations.

We shall carry out in some detail the stability analysis of the equilibrium points of (21) in
the case γ2 = 1, corresponding to dust. It turns out that linearization of (21) is sufficient to
determine the global phase portrait of the system. In fact, the derivative matrix J (ω, χ) of the
vector field of (21) is non-singular and, J computed at each of the eight equilibrium points, has
two real eigenvalues. Therefore, the Hartman-Grobman theorem applies in the case of (21). It is
easy to verify that J computed at all equilibrium points is diagonal. Therefore, we conclude in
a straightforward manner that (−π/2,−1) , (−π/4, +1) , (π/4, +1) , (π/2,−1) are saddle points,
(−π/2, +1) , (π/4,−1) are unstable nodes and (−π/4,−1) , (π/2, +1) , are stable nodes. The
phase portrait is shown in Figure 2.

I II III IV

�

�

�� ��� ��

� ��

��

��� ��

�
��

Figure 2. The phase portrait of (21) with γ2 = 1.

Regions III and IV correspond to expanding models. The F+
1 is a past attractor of all

models with Ω > 0, i.e., the evolution near the big bang is approximated by the flat FRW
model where the Weyl fluid dominates. Open models expand indefinitely and the evolution
is approximated by the Milne universe at late time. Flat models expand indefinitely and the
evolution is approximated by the flat FRW universe at late time. In both cases the “real” second
fluid dominates at late times while the q−fluid becomes insignificant. On the other hand, any
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initially expanding closed model in region III, however close to F+
2 , eventually recollapses and

the evolution is approximated by the flat FRW model where the Weyl fluid dominates.
In the case γ2 = 0 corresponding to a positive cosmological constant, a new equilibrium point

(0, 2/3) appears, denoted by E (see Figure 3). It corresponds to the Einstein static model.

I II III IV

�

�

�� ��� ��

� ��

��

��� ��

�
��

�

Figure 3. The phase portrait of (21) with γ2 = 0.

Consider for example a closed model in region III starting close to the F+
1 model. Its

trajectory passes close to the Einstein model, indicating a phase of halted expansion and
asymptotically approaches the de Sitter model F+

2 . Similarly, an open model in region IV
starting close to F+

1 asymptotically approaches the de Sitter model. This attracting property
of the de Sitter solution for all expanding models is not restricted only to isotropic cosmology.
In fact, the cosmic no-hair conjecture states that all expanding universe models with a positive
cosmological constant, asymptotically approach the de Sitter solution (see for example [21]).

We therefore conclude that the Weyl fluid has significant contribution only near the
cosmological singularities. In expanding models the “real” fluid always dominates at late
times and therefore the contribution of the Weyl fluid to the total energy-momentum tensor
is important only at early times.

5. Extensions
The field equations (8) constitute the generalization of the Einstein equations in a Weyl
spacetime in the sense that they come from the Lagrangian L = R. There is however an
alternative view, namely that the pair (Q,g) which defines the Weyl spacetime also enters
into the gravitational theory and therefore, the field Q must be contained in the Lagrangian
independently from g. In the case of integrable Weyl geometry, i.e. when Qµ = ∂µφ where φ is
a scalar field, the pair (φ, gµν) constitute the set of fundamental geometrical variables. A simple
Lagrangian involving this set is given by

L = R + ξ∇µQµ, (22)
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where ξ is a constant. Motivations for considering theory (22) can be found in [20, 18] (see also
[22] for a multidimensional approach and [23] for an extension of (22) to include an exponential
potential function of φ). By varying the action corresponding to (22) with respect to both gµν

and φ one obtains

◦
Gµν=

3 − 4ξ

2

(
QµQν − 1

2
Q2gµν

)
, and

◦
� φ = 0. (23)

We emphasize that the field equations (8) and (23) are derived via different variational principles.
Note that the second of (23) comes from the variational procedure while (9) is a consequence of
the Bianchi identities.

For isotropic cosmologies one can again interpret the source term in (23) as a perfect fluid
with density and pressure given by

ρ1 = p1 = λq2, λ =
3 − 4ξ

2
(24)

respectively. However, if we allow for ξ to be a free parameter, equation (24) implies that the
energy density and pressure of the q−fluid may take negative values. An important consequence
is that open models (k = −1) in vacuum with λ < 0 avoid the initial singularity [20].

In the following we assume that λ < 0 and apply again the two-fluid analysis of Section 4.
A sufficient negative contribution of the q−fluid to the total energy density and pressure, cf.
(13), may provoke an accelerating expansion of the universe. In fact, the ρ + 3p term in the
Raychaudhuri equation

ä

a
= −1

6
(ρ + 3p) ,

becomes negative provided that 4ρ1 < (2 − 3γ2) ρ2. Unfortunately, this cannot explain the
observed acceleration of the Universe, as we shall see in a moment.

The Friedmann constraint (15) implies that the total density parameter Ω = Ω1 + Ω2 is
still non-negative for flat and closed models, but Ω may be negative for open models. We
conclude that Ω cannot be compactified as in (19) and the transition variable χ defined by (20)
is unbounded. Therefore we cannot apply the Coley and Wainwright formalism developed in
Section 4.

Nevertheless, we can infer about the asymptotic behavior of the system by looking at the
original field equations, (15)-(18). From these equations we see that the state (a, ȧ, ρ1, ρ2) ∈ R

4 of
the system lies on the hypersurface defined by the constraint (15) and the remaining evolution
equations can be written as a constrained four-dimensional dynamical system. By standard
arguments one can show that for flat and open models the sign of H is invariant (see for example
[24]), therefore an initially expanding universe remains ever expanding. Suppose that ä (t0) > 0
at some time t0. Then no solution of (16)-(18) exists such that ä (t) > 0 for all t > t0. In fact,
(17) and (18) can be solved to give

ρ1 =
C1

a6
, ρ2 =

C2

a3γ2
, (25)

where C1 and C2 are constants. Since γ2 < 2, the “real” second fluid in an expanding universe
eventually dominates. Therefore, the term 4ρ1 + (3γ2 − 2) ρ2 in (16) becomes positive at some
time t1 > t0 and evidently ä (t) < 0 for all t > t1. We conclude that even if the universe expands
initially with acceleration, it eventually evolves according to the Friedmann cosmology.

Note that for flat and open models there exist solutions without an initial singularity. To
see this, consider for example γ2 = 1 and substitute (25) into the Friedmann equation (15) with
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k = −1. Then (15) can be interpreted as describing the motion of a particle with total energy
E = 1/2 in the effective potential

V (a) = −A

a
+

B

a4
, A, B > 0. (26)

� ���

�

� � ���

Figure 4. The effective potential (26).

In Figure 4, we see that motion is impossible for values of the scale factor smaller than some
minimum amin and therefore, a (t) ≥ amin for all t. A similar argument shows that flat models,
also avoid the initial singularity, a conclusion already obtained using phase portrait analysis by
Oliveira et al [23].

To summarize, the extension to Weyl geometry in theory (22) cannot explain the observed
acceleration of the Universe. Since the real fluid dominates at late times, the accelerated
expansion due to the Weyl fluid is important only at early times. Nevertheless, it is possible
that theory (22) could provide a geometric explanation of an inflationary phase present in the
early universe. Considering more general Lagrangians, or weakening the requirement of separate
conservation of the two fluids should be the subject of further research in the framework of Weyl
geometry.
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Appendix: Weyl geometry
The connection ∇ of the Weyl space is determined by the symmetric functions

Γα
βγ =

{
α
βγ

}
+ Cα

βγ ,

where
{

α
βγ

}
are the Levi-Civita connection coefficients and the tensor field Cα

βγ is given by

Cα
βγ =

1
2

(
δα
β Qγ + δα

γ Qβ − gβγQα
)
.
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Given a metric and a connection satisfying (1), viz. ∇µgαβ = −Qµgαβ , then for every
differentiable function σ, the metric and the 1-form defined by

g′αβ = σgαβ , Q′
µ = Qµ − ∂µ lnσ (A.1)

respectively, also satisfy (1). Thus, gαβ and Qµ are far from unique; rather g belongs to an
equivalence class [g] of metrics and for each g ∈ [g] , there exists a unique 1-form Q such that
(1) is satisfied. A particular choice of a pair (Q,g) is called a gauge and (A.1) is a gauge
transformation.

The Riemann tensor is defined by

Rα
βγδ = ∂γΓα

βδ − ∂δΓα
βγ + Γα

σγΓσ
βδ − Γα

σδΓ
σ
βγ . (A.2)

In contrast to the familiar property in Riemannian geometry, in Weyl geometry Rµναβ is not
antisymmetric in its first two indices; it satisfies

2R(µν)αβ = gµνHαβ , (A.3)

where
Hαβ := ∂αQβ − ∂βQα. (A.4)

Note that Hαβ is the same for all derivative operators, for example Hαβ = ∇αQβ−∇βQα. When
first introduced by Weyl, Hαβ was supposed to represent the Faraday 2-form. The relation
2R(µν)αβ = gµνHαβ can be obtained either directly from (A.2), or more quickly by applying on
the metric the anticommutativity property of ∇α:

(∇α∇β −∇β∇α) gµν = Rρ
µβαgρν + Rρ

νβαgµρ.

The Ricci tensor is defined by
Rαβ = Rµ

αµβ

and is not a symmetric tensor as we are accustomed to in Riemannian geometry; its
antisymmetric part is given by

R[αβ] = Hαβ .

The geometric meaning of (A.3) is that the measuring units change from point to point (see [25]
for a discussion). In fact, the length l2 = gµνV

µV ν of a vector field V is not invariant when V
is parallely translated in a small circuit ; instead, using the standard argument one may show
that for a closed circuit enclosing an elementary area δSαβ , the variation of the length is

δ
(
l2

)
= R(µν)αβV µV νδSαβ = l2HαβδSαβ .

As a consequence, there is an additional loss of synchronization for two initially synchronized
clocks following different paths from one point to another, due to the distinct variation of the
units of measure along the two paths. This is the so-called second clock effect [26].

When the Weyl vector field is the gradient of a scalar function, then the curl Hαβ vanishes
identically and we have the so-called integrable Weyl geometry. In that case the spacetime is not
a genuine Weyl space, but a conformally equivalent Riemann space. In fact, if Qµ = ∂µφ, where
φ is a scalar field, it is easy to see that it can be gauged away by the conformal transformation
g̃αβ = (expφ) gαβ and therefore the original space is not a general Weyl space, but a Riemann
space with an undetermined gauge [27]. However, most studies of gravity theories were developed
in the framework of integrable Weyl geometry in which the second clock effect is eliminated
[20, 22, 18, 23].
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Bianchi identities
For the convenience of the reader we present a few identities. We denote by D the Levi-Civita

connection.

1. ∇αQα + Q2 = ∇αQα

2. � := gαβ∇α∇β = ∇α∇α = ∇α∇α − Qα∇α

3. Qα∇α = Qα∇α

4. ∇µAν = DµAν + Cν
µαAα, ∇µBν = DµBν − Cα

µνBα

5. Cα
αµ = 2Qµ, gµνCα

µν = −Qα

6. ∇µQν = DµQν − QµQν + 1
2Q2gµν

7. ∇αQα = DαQα + Q2, ∇αQα = DαQα + 2Q2

8. ∇αQ2 = QαQ2 + 2Qµ∇αQµ = Qµ∇αQµ + Qµ∇αQµ

9. (∇µ∇α −∇α∇µ)Qµ = QµRµ
α + QµHαµ = QµRµ

α

We now define the auxiliary operator ∇α := ∇α − Qα; thus ∇α commutes with gµν . Note
that ∇α is not a derivative operator. For every torsion-free connection, the Bianchi identities
take the form

∇ρR
α

µσν + ∇νR
α

µρσ + ∇σRα
µνρ = 0.

We contract on α − σ to obtain

∇ρRµν −∇νRµρ + ∇αRα
µνρ = 0.

Transvection with gρµ yields

∇µRµ
ν −∇νR + ∇αRαµ

νµ = 0 ⇒ ∇µRµ
ν −∇νR −∇α (gαµHµν) + ∇αRµα

µν = 0

⇒ 2∇µRµ
ν −∇νR −∇α (gαµHµν) = 0. (A.5)

On the other hand,

Rµ
ν = gµαRαν = gµα

(
R(αν) + Hαν

)
=: Rµ

ν + gµαHαν ,

hence equation (A.5) yields

2∇µRµ
ν −∇νR + ∇α (gαµHµν) = 0

and since ∇α commutes with gαµ we obtain

∇µ

(
Rµ

ν − 1
2
δµ
ν R

)
= −1

2
∇µ

Hµν . (A.6)

Denoting by Gµ
ν the mixed tensor corresponding to the symmetric part of the Einstein tensor,

i.e.,
Gµ

ν = gµαG(αν),

the Bianchi identities (A.6) can be finally written as

(∇µ − Qµ)Gµ
ν = −1

2
(∇µ − Qµ) Hµν . (A.7)

Note that in the case of integrable Weyl geometry, equation (A.7) reduces to ∇µGµ
ν = QµGµ

ν

which is usually referred in the literature as Bianchi identity (cf. [12]).
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Relation with the Levi-Civita connection
It is useful to express the Einstein tensor and the Bianchi identities in terms of quantities

formed with the Levi-Civita connection, D. Starting with the definition of the Riemann tensor
we arrive at

Rα
βγδ =

◦
Rα

βγδ +∂γCα
βδ − ∂δC

α
βγ + Cα

µγCµ
βδ − Cα

µδC
µ
βγ

+
{

α
µγ

}
Cµ

βδ +
{

µ
βδ

}
Cα

µγ −
{

α
µδ

}
Cµ

βγ −
{

µ
βγ

}
Cα

µδ,

where the accent ◦ denotes a quantity formed with the Levi-Civita connection. We contract on
α, γ and take account of Cα

αµ = 2Qµ, gµνCα
µν = −Qα,

{
α
αµ

}
= ∂µ ln

√−g to obtain for the
symmetric part of the Ricci tensor,

R(βδ) =
◦
Rβδ −D(β Q δ) +

1
2
QβQδ −

1
2
gβδ

(
DµQµ + Q2

)
and upon a new contraction,

R =
◦
R −3DαQα − 3

2
Q2.

Therefore the Einstein tensor takes the form

G(αβ) =
◦
Gαβ −D(α Qβ) +

1
2
QαQβ + gαβ

(
DµQµ +

1
4
Q2

)
. (A.8)

We now turn to the Bianchi identities. We calculate the right-hand side (RHS) of (A.7)

(∇α − Qα)Gα
ν = DαGα

ν + Cα
αβGβ

ν − Cβ
ανG

α
β − QαGα

ν . (A.9)

Taking into account of (A.8) the first term in the RHS of (A.9) can be written as

DαGα
ν = Dα

◦
Gα

ν −1
2

◦
� Qν − 1

2
DαDνQ

α + DνDαQα

+
1
2
QνDαQα +

1
2

(QαDα)Qν +
1
4
DνQ

2.

We use the anticommutativity of the derivative operator Dα to write the terms −1
2DαDνQ

α +
DνDαQα as

−Qα

◦
Rα

ν +
1
2
DαDνQ

α.

The second and the last terms in the RHS of (A.9) can be written as

Cα
αβGβ

ν − QαGα
ν = Qα

◦
Gα

ν −1
2

(QαDα)Qν

− 1
4
DνQ

2 +
1
2
QνQ

2 + QνDαQα +
1
4
QνQ

2.

The third term in the RHS of (A.9) can be written as

−Cβ
ανG

α
β = −1

2

(
δβ
αQν + δβ

ν Qα − gανQ
β
)

Gα
β =

1
2
QνR

=
1
2
Qν

◦
R −3

2
QνDαQα − 3

4
QνQ

2.
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Putting all these together we obtain from equation (A.9)

(∇α − Qα)Gα
ν = −1

2
◦
� Qν +

1
2
DαDνQ

α.

On the other hand,

(∇α − Qα) Hαν = gαµ
(
DµHαν − Cρ

µαHρν − Cρ
µνHαρ

)
− QαHαν

=
◦
� Qν − DαDνQ

α − QαHαν .

Therefore the Bianchi identities (A.7) reduce to

QαHαν = 0. (A.10)
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