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Abstract

The Einstein-Hilbert action in general relativity has been remarkably successful, despite its lack of a fundamental
mathematical symmetry known as conformal invariance, a symmetry that many consider natural and desirable in
relativistic cosmology, if not in all of physics. Although a fully conformal action was proposed a century ago by
Weyl, interest was largely ignored due to the complexity of the associated field equations and the fact that the
action is necessarily of fourth order in the metric tensor and its derivatives—an undesirable aspect believed to
result in unphysical quantities such as ghost fields. However, in 1989 Mannheim and Kazanas (MK) managed to
solve the equations of motion using a Schwarzschild-like metric that involved two integration constants beyond
that of the usual Schwarzschild point mass. By setting these constants to zero, the MK solution reduces to the
Schwarzschild metric and thus fully reproduces the predictions of Einsteinian gravity for free space. This gave
rise to the hope that a fully conformal approach to general relativity might address the problems of dark matter
and dark energy. Indeed, the MK solution has had significant success in predicting the anomalous flat velocity
curves of stars far from their galactic centers, a phenomenon that is currently associated with the presence of
dark matter.

Recently it has been shown that the MK metric is equivalent to that of Schwarzschild-de Sitter spacetime, which
predicts the future end point of the universe in which all ordinary matter and energy has devolved into a state
of stray high-entropy radiation via particle decay and black hole evaporation, with dark energy dominating the
continued evolution of the universe. We discuss the immediate consequences of this equivalency, along with a
related aspect that comes from Weyl’s failed 1918 theory of the unified gravitational-electromagnetic field.

1. Introduction

One hundred years ago the German mathematical physicist Hermann Weyl showed that the most general
gravitational action that is invariant with respect to the conformal metric transformation gµν→ Ω2(x)gµν is

S =

∫

p

−g Cµναβ Cµναβ d4 x (1.1)

where, in four dimensions,

Cµναβ = Rµναβ +
1
2

�

gµβ Rνα − gµα Rνβ + gνα Rµβ − gνβ Rµα
�

+
1
6

�

gµα gβν − gµβ gαν
�

R

is the Weyl tensor. Unlike the Einstein-Hilbert Lagrangian
p
−g R, the equations of motion associated with (1.1)

are complicated due mainly to the presence of the Riemann tensor Rµναβ . (As an aside, we note that the matter
action associated with (1.1) is likely going to be problematic as well, given that it is quadratic and of fourth
order.)

However, with a little algebra (1.1) can be reduced to the much simpler quantity

SG =

∫

p

−g
�

Rµν Rµν −
1
3

R2
�

d4 x (1.2)

The reduction is based on a subtle appeal1 to the Bianchi identities
�

Rµν −
1
2

gµνR
�

||ν
= 0

1Textbooks invariably have the so-called Gauss-Bonnet quantity
∫

p

−g
�

Rµναβ Rµναβ − 4 RµνRµν + R2
�

d4 x

as a pure divergence. This is in fact not a divergence or surface term, but it can be eliminated from (1.1) as a direct consequence of the Bianchi
identities. If we write the integrand as Rµναβ Rµναβ +ARµνRµν+B R2 where A and B are constants, then the condition A+3B = −1 is equivalent
to the Gauss-Bonnet identity. Upon elimination of the Rµναβ Rµναβ term, we recover (1.2). See Reference 2 for a detailed derivation.
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where the double subscripted bar represents covariant differentiation. While the equations of motion associated
with (1.2) for free space are still complicated, in 1989 Mannheim and Kazanas (see Reference 3) found that for
the Schwarzschild line element

ds2 = eνc2d t2 − eλdr2 − r2dθ 2 − r2 sin2 θdφ2

the general solution is

eν = e−λ = 1− 3βγ−
β(2− 3βγ)

r
+ γr − kr2 (1.3)

where β ,γ, k are constants. Obviously, for γ= k = 0 the MK metric is identical to the Schwarzschild metric, with
β representing the geometric source mass GM/c2. The linear and quadratic terms in (1.3) represent expansion
and acceleration terms that Mannheim and Kazanas thought might be linked to dark matter and dark energy. Of
particular interest is the linear term in r, which we will see is absent in the Schwarzschild-de Sitter metric. One
can show that stellar rotational velocities can be expressed as

v2 =
r2

eν

�

dφ
d t

�2

=
r

2eν
deν

dr

which, given the presence of the linear term, describes flat stellar rotation curves for large r. However, while (1.3)
accurately describes the effects of dark matter for many galaxies, it fails with respect to observations of many
galactic clusters and cosmological lensing effects. Indeed, Hobson and Lasenby showed (see Reference 4) that the
linear term in (1.3) can be eliminated by a suitable transformation of the radial parameter coupled with a
conformal transformation of the metric.

2. Schwarzschild-de Sitter Spacetime

While (1.2) is considerably simpler than (1.1), the presence of the Rµν Rµν term still greatly complicates the
associated MK solution, and one wonders if a futher simplication might be possible. Let us consider the original de
Sitter problem, which describes a universe completely devoid of mass-energy but with a cosmological constant Λ,
a scenario that is believed to be valid with the continued expansion of the universe. It is described by the Einstein
equations

Rµν −
1
2

gµνR+Λgµν = 0

where the cosmological constant is assumed to be non-zero and positive for an accelerating universe. Contraction
gives the equivalent traceless expression

Rµν −
1
4

gµνR= 0 (2.1)

where R= 4Λ. A Schwarzschild-like metric for (1.4) was discovered long ago, and is given by

eν = −e−λ = 1−
2GM
c2r

− kr2 (2.2)

where k is a constant proportional to R. The similarity of (2.2) and (1.3) is evident, with the expressions differing
only by a term linear in r and a trivial constant. However, Hobson and Lasenby have shown that (2.2) and (1.3)
are equivalent, given the fact that a coordinate transformation in r, coupled with the conformal (Weyl)
transformation ds2→ Ω2ds, easily demonstrates their equivalence. To see this, we consider the MK line element
in the Schwarzschild form

ds2 = Ac2d t2 −
dr2

A
− r2dθ 2 − r2 sin2 θdφ2, A= 1− 3βγ−

β(2− 3βγ)
r

+ γr − Kr2 (2.3)

We wish to keep the coordinates t,θ ,φ unchanged under the conformal transformation ds2→= Ω2ds. The only
coordinate change will involve the radial parameter r, so we will have dr → dr ′. Nothing else changes, so we
wish to consider the equivalent line element

ds2 = Ω2B c2d t2 −Ω2 dr ′2

B
− r ′2dθ 2 − r ′2 sin2 θdφ2
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Comparing the two line elements, we have A= Ω2B and r = Ω2r ′, the latter of which agrees with the
transformation of the metric

g ′11 =
�

∂ r
∂ r ′

�2

g11

We also have Ω2 dr ′ = dr which, assuming Ω= Ω(r ′), integrates to

r =
r ′

1− ar ′

where a is a constant of integration to be determined. We can now solve for the coefficient B in terms of the
primed coordinates, which is

B = 1− 3βγ+ 3aβ (2− 3βγ)−
β(2− 3βγ)

r ′
+
�

γ− 2α+ 6aβγ− 3a2β(2− 3βγ)
�

r ′

−
�

k+ a2 − 3a2βγ− aγ+ a3β(2− 3βγ)
�

r ′2

The r ′ coefficient is a simple quadratic in the constant a, and it can be set to zero by choosing

a =
γ

2− 3βγ

so that the required coordinate change in r is

r =
γr ′

1− γr ′/(2− 3βγ)

with
Ω= 1+

γ

1− γr ′/(2− 3βγ)

This also wipes out the 3βγ term in (1.3), while the coefficient k′ becomes

k′ = k+
γ2(1− βγ)
(2− 3βγ)2

(2.4)

The transformed metric is thus

eν = e−λ = 1−
β(2− 3βγ)

r ′
− k′r ′2 (2.5)

Consequently, the MK metric and the Schwarzschild-de Sitter metric are effectively one and the same. This
equivalence presents several problems, which are addressed in the following..

3. Concluding Remarks

In view of the equivalence of the MK and Schwarzschild-de Sitter metrics, there is no longer any need to consider
the problematic Rµν Rµν term in the MK metric. By simply omitting it from the associated Lagrangian we recover
the much simpler Schwarzschild-de Sitter solution for free space. This appears to justify our stated desire to
eliminate the term for the sake of simplicity.

However, this still leaves the problem of determining an appropriate mass-energy term for non-empty space. As
noted earlier, an action that is quadratic in the Ricci scalar R presents problems with regard to the associated
energy-momentum tensor Tµν, which traditionally is derived via the variational identity

Tµν = −2
1
p
−g

δ(
p
−gSM )
δgµν

where SM is the mass-energy parameter. Clearly, Tµν is of dimension zero, but it leaves open the possibility that it
might also need to be quadratic like the gravitational equations of motion. Interestingly, the Schwarzschild-de
Sitter action

S =

∫

p

−g R2 d4 x
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is dimensionless, eliminating the need for the 8πG/c4 term of traditional Einsteinian gravity. In addition, the
Schwarzschild-de Sitter solution (2.1) is traceless, and a traceless matter term would seem to be required as well.
The most familiar traceless energy-momentum term is the electromagnetic stress-energy tensor

Tµν = FµαFνα −
1
4

gµνFαβ Fαβ

where Fµν is the electromagnetic tensor. Lastly, we have to explain how the Schwarzschild-de Sitter action is
conformally invariant despite the elimination of the Rµν Rµν term from the MK action. A straightforward
calculation shows that a conformal variation leads to

δ

δgµν

∫

p

−g R2 d4 x = −6

∫

�p

−g gµνR|µ
�

|ν d4 x = 0

where the single subscripted bar represents ordinary partial differentiation (in Riemannian geometry, covariant
derivatives and partial derivatives are the same for vector densities). In free space R is a constant proportional to
the cosmological constant Λ, so conservation of the above vector density is trivially satisfied. But the divergence
condition

�p
−g gµνR|µ

�

|ν = 0 might still hold for a non-constant R in a space containing mass-energy. Proof of
this assertion requires a suitable energy-momentum tensor (perhaps a quadratic), which at present we do not
have.

In his failed 1918 theory of the unified gravitational-electromagnetic field, Weyl (see Reference 5) assumed the
conformal invariance of his theeory’s action. To accomplish this, he also had to assume the existence of a local
four-vector field φµ(x) which, when incorporated into the Ricci scalar R, achieved the desired invariance. But this
also meant that his action had to be quadratic in the Ricci scalar R. Nevertheless, Weyl went on to show that in
the absence of the φµ field, the vector density

p
−g gµνR|µ was a conserved quantity, and he boldly asserted that

this scalar density was none other than the electromagnetic source density
p
−g Sµ, where Sµ is the source

four-vector.

It is interesting that the notion of conformal invariance, first proposed over a hundred years ago and later shown
to be of fundamental importance in modern quantum theory, continues to be of significant theoretical and
observational importance today.
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