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1. Introduction

The task of quantizing general relativity raises serious questions about the
meaning of the present formulation and interpretation of quantum mechanics
when applied to so fundamental a structure as the space-time geometry itself.
This paper seeks to clarify the foundations of quantum mechanics. It presents
a reformulation of quantum theory in a form believed suitable for application
to general relativity.

The aim is not to deny or contradict the conventional formulation of
quantum theory, which has demonstrated its usefulness in an overwhelming
variety of problems, but rather to supply a new, more general and complete
formulation, from which the conventional interpretation can be deduced.

The relationship of this new formulation to the older formulation is there-
fore that of a metatheory to a theory, that is, it is an underlying theory in
which the nature and consistency, as well as the realm of applicability, of the
older theory can be investigated and clarified.
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The new theory is not based on any radical departure from the conven-
tional one. The special postulates in the old theory which deal with obser-
vation are omitted in the new theory. The altered theory thereby acquires a
new character. It has to be analyzed in and for itself before any identification
becomes possible between the quantities of the theory and the properties of
the world of experience. The identification, when made, leads back to the
omitted postulates of the conventional theory that deal with observation, but
in a manner which clarifies their role and logical position.

We begin with a brief discussion of the conventional formulation, and
some of the reasons which motivate one to seek a modification.

2. Realm of Applicability of the Conventional

or “External Observation” Formulation of

Quantum Mechanics

We take the conventional or “external observation” formulation of quantum
mechanics to be essentially the following1: A physical system is completely
described by a state function ψ, which is an element of a Hilbert space,
and which furthermore gives information only to the extent of specifying the
probabilities of the results of various observations which can be made on the
system by external observers. There are two fundamentally different ways in
which the state function can change:

Process 1 : The discontinuous change brought about by the observation
of a quantity with eigenstates φ1, φ2, · · · , in which the state ψ will be
changed to the state φj with probability |(ψ, φj)|2.

Process 2 : The continuous, deterministic change of state of an isolated
system with time according to a wave equation ∂ψ/∂t = Aψ, where A
is a linear operator.

This formulation describes a wealth of experience. No experimental evidence
is known which contradicts it.

1We use the terminology and notation of J. von Neumann, Mathematical Foundations of
Quantum Mechnanics, translated by R. T. Beyer (Princeton University Press, Princeton,
1955).
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Not all conceivable situations fit the framework of this mathematical for-
mulation. Consider for example an isolated system consisting of an observer
or measuring apparatus, plus an object system. Can the change with time of
the state of the total system be described by Process 2? If so, then it would
appear that no discontinuous probabilistic process like Process 1 can take
place. If not, we are forced to admit that systems which contain observers
are not subject to the same kind of quantum-mechanical description as we
admit for all other physical systems. The question cannot be ruled out as
lying in the domain of psychology. Much of the discussion of “observers” in
quantum mechanics has to do with photoelectric cells, photographic plates,
and similar devices where a mechanistic attitude can hardly be contested. For
the following one can limit himself to this class of problems, if he is unwilling
to consider observers in the more familiar sense on the same mechanistic level
of analysis.

What mixture of Process 1 and 2 of the conventional formulation is to be
applied to the case where only an approximate measure is effected; that is,
where an apparatus or observer interacts only weakly and for a limited time
with an object system? In this case of an approximate measurement a proper
theory must specify (1) the new state of the object system that corresponds
to any particular reading of the apparatus and (2) the probability with which
this reading will occur. von Neumann showed how to treat a special class of
approximate measurements by the method of projection operators.2 How-
ever, a general treatment of all approximate measurements by the method of
projections operators can be shown (Sec. 4) to be impossible.

How is one to apply the conventional formulation of quantum mechanics
to the space-time geometry itself? The issue becomes especially acute in the
case of a closed universe.3 There is no place to stand outside the system
to observe it. There is nothing outside it to produce transitions from one
state to another. Even the familiar concept of a proper state of the energy
is completely inapplicable. In the derivation of the law of conservation of
energy, one defines the total energy by way of an integral extended over a
surface large enough to include all parts of the system and their interactions.4

But in a closed space, when a surface is made to include more and more of

2Reference 1, Chap. 4, Sec. 4.
3See A. Einstein, The Meaning of Relativity (Princeton University Press, Princeton,

1950), third edition, p. 107.
4L. Landau and E. Lifshitz, The Classical Theory of Fields, translated by M. Hamer-

mesh (Addison-Wesley Press, Cambridge, 1951), p. 343.
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the volume, it ultimately disappears into nothingness. Attempts to define
the total energy for a closed space collapse to the vacuous statement, zero
equals zero.

How are a quantum description of a closed universe, of approximate mea-
surements, and of a system that contains an observer to be made? These
three questions have one feature in common, that they all inquire about the
quantum mechanics that is internal to an isolated system.

No way is evident to apply the conventional formulation of quantum me-
chanics to a system that is not subject to external observation. The whole
interpretive scheme of that formalism rests upon the notion of external obser-
vation. The probabilities of the various possible outcomes of the observation
are prescribed exclusively by Process 1. Without that part of the formalism
there is no means whatever to ascribe a physical interpretation to the con-
ventional machinery. But Process 1 is out of the question for systems not
subject to external observation.5

3. Quantum Mechanics Internal to an Iso-

lated System

This paper proposes to regard pure wave mechanics (Process 2 only) as a
complete theory. It postulates that a wave function that obeys a linear wave
equation everywhere and at all times supplies a complete mathematical model
for every isolated physical system without exception. It further postulates
that every system that is subject to external observation can be regarded as
part of a larger isolated system.

The wave function is taken as the basic physical entity with no a priori
interpretation. Interpretation only comes after an investigation of the logical
structure of the theory. Here as always the theory itself sets the framework
for its interpretation.5

For any interpretation it is necessary to put the mathematical model
of the theory into correspondence with experience. For this purpose it is
necessary to formulate abstract models for observers that can be treated
within the theory itself as physical systems, to consider isolated systems
containing such model observers in interaction with other subsystems, to

5See in particular the discussion of this point by N. Bohr and L. Rosenfeld, Kgl. Danske
Videnskab. Selskab, Mat.-fys. Medd. 12, No. 8 (1933).
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deduce the changes that occur in an observer as a consequence of interaction
with the surrounding subsystems, and to interpret the changes in the familiar
language of experience.

Section 4 investigates representations of the state of a composite system
in terms of states of constituent subsystems. The mathematics leads one
to recognize the concept of the relativity of states, in the following sense: a
constituent subsystem cannot be said to be in any single well-defined state,
independently of the remainder of the composite system. To any arbitrar-
ily chosen state for one subsystem there will correspond a unique relative
state for the remainder of the composite system. This relative state will
usually depend upon the choice of state for the first subsystem. Thus the
state of one subsystem does not have an independent existence, but is fixed
only by the state of the remaining subsystem. In other words, the states
occupied by the subsystems are not independent, but correlated. Such cor-
relations between systems arise whenever systems interact. In the present
formulation all measurements and observation processes are to be regarded
simply as interactions between the physical systems involved—interactions
which produce strong correlations. A simple model for a measurement, due
to von Neumann, is analyzed from this viewpoint.

Section 5 gives an abstract treatment of the problem of observation. This
uses only the superposition principle, and general rules by which composite
system states are formed of subsystem states, in order that the results shall
have the greatest generality and be applicable to any form of quantum theory
for which these principles hold. Deductions are drawn about the state of
the observer relative to the state of the object system. It is found that
experiences of the observer (magnetic tape memory, counter system, etc.)
are in full accord with predictions of the conventional “external observer”
formulation of quantum mechanics, based on Process 1.

Section 6 recapitulates the “relative state” formulation of quantum me-
chanics.

4. Concept of Relative State

We now investigate some consequences of the wave mechanical formalism of
composite systems. If a composite system S, is composed of two subsystems
S1 and S2, with associated Hilbert spaces H1 and H2, then, according to
the usual formalism of composite systems, the Hilbert space for S is taken
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to be the tensor product of H1 and H2 (written H = H1 ⊗ H2). This has
the consequence that if the sets {ξS1

i } and {ηS2
j } are complete orthonormal

sets of states for S1 and S2, respectively, then the general state of S can be
written as a superposition:

ψS =
∑
i,j

aijξ
S1
i ηS2

j . (1)

From (3.1) [sic] although S is in a definite state ψS, the subsystems S1 and
S2 do not possess anything like definite states independently of one another
(except in the special case where all but one of the aij are zero).

We can, however, for any choice of a state in one subsystem, uniquely
assign a corresponding relative state in the other subsystem. For example,
if we choose ξk as the state for S1, while the composite system S is in the
state ψS given by (3.1) [sic], then the corresponding relative state in S2,
ψ(S2; relξk, S1), will be:

ψ(S2; relξk, S1) = Nk

∑
j

akjη
S2
j (2)

whereNk is a normalization constant. This relative state for ξk is independent
of the choice of basis {ξi} (i 6= k) for the orthogonal complement of ξk, and is
hence determined uniquely by ξk alone. To find the relative state in S2 for an
arbitrary state of S1 therefore, one simply carries out the above procedure
using any pair of bases for S1 and S2 which contains the desired state as
one element of the basis for S1. To find states in S1 relative to states in S2,
interchange S1 and S2 in the procedure.

In the conventional or “external observation” formulation, the relative
state in S2, ψ(S2; relφ, S1), for a state φS1 in S1, gives the conditional prob-
ability distributions for the results of all measurements in S2, given that S1

has been measured and found to be in state φS1—i.e., that φS1 is the eigen-
function of the measurement in S1 corresponding to the observed eigenvalue.

For any choice of basis in S1, {ξi}, it is always possible to represent the
state of S, (1), as a single superposition of pairs of states, each consisting of
a state from the basis {ξi} in S1 and its relative state in S2. Thus, from (2),
(1) can be written in the form:

ψS =
∑

i

1

Ni

ξS1
i ψ(S2; relξi, S1). (3)
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This is an important representation used frequently.
Summarizing: There does not, in general, exist anything like a single

state for one subsystem of a composite system. Subsystems do not possess
states that are independent of the states of the remainder of the system, so
that the subsystem states are generally correlated with one another. One can
arbitrarily choose a state for one subsystem, and be led to the relative state
for the remainder. Thus we are faced with a fundamental relativity of states,
which is implied by the formalism of composite systems. It is meaningless to
ask the absolute state of a subsystem—one can only ask the state relative to
a given state of the remainder of the subsystem

At this point we consider a simple example, due to von Neumann, which
serves as a model of a measurement process. Discussion of this example pre-
pares the ground for the analysis of “observation.” We start with a system
of only one coordinate, q (such as position of a particle), and an apparatus
of one coordinate r (for example the position of a meter needle). Further
suppose that they are initially independent, so that the combined wave func-
tion is ψS+A

0 = φ(q)η(r) where φ(q) is the initial system wave function, and
η(r) is the initial apparatus function. The Hamiltonian is such that the two
systems do not interact except during the interval t = 0 to t = T , during
which time the total Hamiltonian consists only of a simple interaction,

HI = −ih̄q(∂/∂r). (4)

Then the state
ψS+A

t (q, r) = φ(q)η(r − qt) (5)

is a solution of the Schrödinger equation,

ih̄(∂ψS+A
t /∂t) = HIψ

S+A
t , (6)

for the specified initial conditions at time t = 0.
From (5) at time t = T (at which time interaction stops) there is no longer

any definite independent apparatus state, nor any independent system state.
The apparatus therefore does not indicate any definite object-system value,
and nothing like process 1 has occurred.

Nevertheless, we can look upon the total wave function (5) as a superposi-
tion of pairs of subsystem states, each element of which has a definite q value
and a correspondingly displaced apparatus state. Thus after the interaction
the state (5) has the form:

ψS+A
T =

∫
φ(q′)δ(q − q′)η(r − qT )dq′, (7)
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which is a superposition of states ψq′ = δ(q − q′)η(r − qT ). Each of these
elements, ψq′ , of the superposition describes a state in which the system has
the definite value q = q′, and in which the apparatus has a state that is
displaced from its original state by the amount q′T . These elements ψq′ are
then superposed with coefficients φ(q′) to form the total state (7).

Conversely, if we transform to the representation where the apparatus
coordinate is definite, we write (5) as

ψS+A
T =

∫
(1/Nr′)ξr′

(q)δ(r − r′)dr′,

where
ξr′

(q) = Nr′φ(q)η(r′ − qT ) (8)

and

(1/Nr′)2 =

∫
φ∗(q)φ(q)η∗(r′ − qT )η(r′ − qT )dq.

Then the ξr′
(q) are the relative system state functions6 for the apparatus

states δ(r − r′) of definite value r = r′.
If T is sufficiently large, or η(r) sufficiently sharp (near δ(r)), then ξr′

(q) is
nearly δ(q− r′/T ) and the relative system states ξr′

(q) are nearly eigenstates
for the values q = r′/T .

We have seen that (8) is a superposition of states ψr′ , for each of which the
apparatus has recorded a definite value r′, and the system is left in approx-
imately the eigenstate of the measurement corresponding to q = r′/T . The
discontinuous “jump” into an eigenstate is thus only a relative proposition,
dependent upon the mode of decomposition of the total wave function into
the superposition, and relative to a particularly chosen apparatus-coordinate
value. So far as the complete theory is concerned all elements of the super-
position exist simultaneously, and the entire process is quite continuous.

von Neumann’s example is only a special case of a more general situation.
Consider any measuring apparatus interacting with any object system. As

6This example provides a model of an approximate measurement. However, the relative
system states after the interaction ξr′

(q) cannot ordinarily be generated from the original
system state φ by the application of any projection operator, E. Proof: Suppose on
the contrary that ξr′

(q) = NEφ(q) = N ′φ(q)η(r′ − qt), where N,N ′ are normalization
constants. Then

E(NEφ(q)) = NE2φ(q) = N ′′φ(q)η2(r′ − qt)

and E2φ(q) = (N ′′/N)φ(q)η2(r′ − qt). But the condition E2 = E which is necessary for
E to be a projection implies that N ′/N ′′η(q) = η2(q) which is generally false.
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a result of the interaction the state of the measuring apparatus is no longer
capable of independent definition. It can be defined only relative to the state
of the object system. In other words, there exists only a correlation between
the two states of the two systems. It seems as if nothing can ever be settled
by such a measurement.

This indefinite behavior seems to be quite at variance with our observa-
tions, since physical objects always appear to us to have definite positions.
Can we reconcile this feature wave mechanical theory built purely on Process
2 with experience, or must the theory be abandoned as untenable? In order
to answer this question we consider the problem of observation itself within
the framework of the theory.

5. Observation

We have the task of making deductions about the appearance of phenomena
to observers which are considered as purely physical systems and are treated
within the theory. To accomplish this it is necessary to identify some present
properties of such an observer with features of the past experience of the
observer. Thus, in order to say that an observer 0 has observed the event α,
it is necessary that the state of 0 has become changed from its former state
to a new state which is dependent upon α.

It will suffice for our purposes to consider the observers to possess memo-
ries (i.e., parts of a relatively permanent nature whose states are in correspon-
dence with past experience of the observers). In order to make deductions
about the past experience of an observer it is sufficient to deduce the present
contents of the memory as it appears within the mathematical model.

As models for observers we can, if we wish, consider automatically func-
tioning machines, possessing sensory apparatus and coupled to recording
devices capable of registering past sensory data and machine configurations.
We can further suppose that the machine is so constructed that its present
actions shall be determined not only by its present sensory data, but by
the contents of its memory as well. Such a machine will then be capable
of performing a sequence of observations (measurements), and furthermore
of deciding upon its future experiments on the basis of past results. If we
consider that current sensory data, as well as machine configuration, is im-
mediately recorded in the memory, then the actions of the machine at a given
instant can be regarded as a function of the memory contents only, and all

9



relavant [sic] experience of the machine is contained in the memory.
For such machines we are justified in using such phrases as “the machine

has perceived A” or “the machine is aware of A” if the occurrence of A is
represented in the memory, since the future behavior of the machine will
be based upon the occurrence of A. In fact, all of the customary language
of subjective experience is quite applicable to such machines, and forms the
most natural and useful mode of expression when dealing with their behavior,
as is well known to individuals who work with complex automata.

When dealing with a system representing an observer quantum mechan-
ically we ascribe a state function, ψ0, to it. When the state ψ0 describes an
observer whose memory contains representations of the events A,B, · · · , C
we denote this fact by appending the memory sequence in brackets as a
subscript, writing:

ψ0
[A,B,··· ,C]. (9)

The symbols A,B, · · · , C, which we assume to be ordered time-wise, there-
fore stand for memory configurations which are in correspondence with the
past experience of the observer. These configurations can be regarded as
punches in a paper tape, impressions on a magnetic reel, configurations of a
relay switching circuit, or even configurations of brain cells. We require only
that they be capable of the interpretation “The observer has experienced
the succession of events A,B, · · · , C.” (We sometimes write dots in a mem-
ory sequence, · · ·A,B, · · · , C, to indicate the possible presence of previous
memories which are irrelevant to the case being considered.)

The mathematical model seeks to treat the interaction of such observer
systems with other physical systems (observations), within the framework of
Process 2 wave mechanics, and to deduce the resulting memory configura-
tions, which are then to be interpreted as records of the past experiences of
the observers.

We begin by defining what constitutes a “good” observation. A good
observation of a quantity A, with eigenfunctions φi, for a system S, by an
observer whose initial states is ψ0, consists of an interaction which, in a
specified period of time, transforms each (total) state

ψS+0 = φiψ
0
[...] (10)

into a new state
ψS+0′

= φiψ
0
[...αi]

(11)
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where αi characterizes7 the state φi. (The symbol, αi, might stand for a
recording of the eigenvalue, for example.) That is, we require that the system
state, if it is an eigenstate, shall be unchanged, and (2) that the observer
state shall change so as to describe an observer that is “aware” of which
eigenfunction it is; that is, some property is recorded in the memory of the
observer which characterizes φi, such as the eigenvalue. The requirement that
the eigenstates for the system be unchanged is necessary if the observation
is to be significant (repeatable), and the requirement that the observer state
change in a manner which is different for each eigenfunction is necessary if
we are to be able to call the interaction an observation at all. How closely a
general interaction satisfies the definition of a good observation depends upon
(1) the way in which the interaction depends upon the dynamical variables of
the observer system—including memory variables—and upon the dynamical
variables of the object system and (2) the initial state of the observer system.
Given (1) and (2), one can for example solve the wave equation, deduce the
state of the composite system after the end of the interaction, and check
whether an object system that was originally in an eigenstate is left in an
eigenstate, as demanded by the repeatability postulate. This postulate is
satisfied, for example, by the model of von Neumann that has already been
discussed.

From the definition of a good observation we first deduce the result of an
observation upon a system which is not in an eigenstate of the observation.
We know from our definition that the interaction transforms states φiψ

0
[··· ]

into states φiψ
0
[···αi]

. Consequently these solutions of the wave equation can
be superposed to give the final state for the case of an arbitrary initial system
state. Thus if the initial system state is not an eigenstate, but a general state∑

i aiφi, the final total state will have the form:

ψS+0′
=

∑
aiφiψ

0
[···αi]

. (12)

This superposition principle continues to apply in the presence of further
systems which do not interact during the measurement. Thus, if systems
S1, S2, · · · , Sn are present as well as 0, with original states ψS1 , ψS2 , · · · , ψSn ,
and the only interaction during the time of measurement takes place between

7It should be understood that ψ0
[...αi]

is a different state for each i. A more precise
notation would write ψ0

i[...αi]
, but no confusion can arise if we simply let the ψ0

i be indexed
only by the index of the memory configuration symbol.
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S1 and 0, the measurement will transform the initial total state:

ψS1+S2+···+Sn+0 = ψS1ψS2 · · ·ψSnψ0
[··· ] (13)

into the final state:

ψ′S1+S2+···+Sn+0 =
∑

i

aiφ
S1
i ψ

S2 · · ·ψSnψ0
[···αi]

(14)

where ai = (φS1
i , ψ

S1) and φS1
i are the eigenfunctions of the observation.

Thus we arrive at the general rule for the transformation of total state
functions which describe systems within which observation processes occur:

Rule 1 : The observation of a quantity A, with eigenfunctions φS1
i , in a

system S1 by the observer 0, transforms the total state according to:

ψS1ψS2 · · ·ψSnψ0
[··· ] →

∑
i

aiφ
S1
i ψ

S2 · · ·ψSnψ0
[···αi]

(15)

where
ai = (φS1

i , ψ
S1).

If we next consider a second observation to be made, where our total
state is now a superposition, we can apply Rule 1 separately to each element
of the superposition, since each element separately obeys the wave equation
and behaves independently of the remaining elements, and then superpose
the results to obtain the final solution. We formulate this as:

Rule 2 : Rule 1 may be applied separately to each element of a super-
position of total system states, the results being superposed to obtain
the final total state. Thus, a determination of B, with eigenfunctions
ηS2

j , on S2 by the observer 0 transforms the total state∑
i

aiφ
S1
i ψ

S2 · · ·ψSnψ0
[···αi]

(16)

into the state ∑
i,j

aibjφ
S1
i η

S2
j ψS3 · · ·ψSnψ0

[···αi,βj ]
(17)

where bj = (ηS2
j , ψS2), which follows from the application of Rule 1

to each element φS1
i ψ

S2 · · ·ψSnψ0
[···αi]

, and then superposing the results
with the coefficients ai.

12

Jeff Barrett
Note
The presence of other physical systems is irrelevant to any particular measurement interaction if those systems do not interact with the measuring device or the object system.

Jeff Barrett
Note
Just as with rule~1, this rule holds since Process~2 is linear.



These two rules, which follow directly from the superposition principle,
give a convenient method for determining final total states for any number of
observation processes in any combinations. We now seek the interpretation
of such final total states.

Let us consider the simple case of a single observation of a quantity A,
with eigenfunctions φi, in the system S with initial state ψS, by an observer
0 whose initial state is ψ0

[··· ]. The final result is, as we have seen, the super-
position

ψ′S+0 =
∑

i

aiφiψ
0
[···αi]

. (18)

There is no longer any independent system state or observer state, although
the two have become correlated in a one-one manner. However, in each el-
ement of the superposition, φiψ

0
[···αi]

, the object-system state is a particular
eigenstate of the observation, and furthermore the observer-system state de-
scribes the observer as definitely perceiving that particular system state. This
correlation is what allows one to maintain the interpretation that a measure-
ment has been performed.

We now consider a situation where the observer system comes into in-
teraction with the object system for a second time. According to Rule 2 we
arrive at the total state after the second observation:

ψ′′S+0 =
∑

i

aiφiψ
0
[···αi,αi]

. (19)

Again, each element φiψ
0
[···αi,αi]

describes a system eigenstate, but this time
also describes the observer as having obtained the same result for each of
the two observations. Thus for every separate state of the observer in the
final superposition the result of the observation was repeatable, even though
different for different states. The repeatability is a consequence of the fact
that after an observation the relative system state for a particular observer
state is the corresponding eigenstate.

Consider now a different situation. An observer-system 0, with initial
state ψ0

[··· ], measures the same quantity A in a number of separate, identical,

systems which are initially in the same state, ψS1 = ψS2 = · · · = ψSn =∑
i aiφi (where the φi are, as usual, eigenfunctions of A). The initial total

state function is then

ψS1+S2+···+Sn+0
0 = ψS1ψS2 · · ·ψSnψ0

[··· ]. (20)
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Jeff Barrett
Note
This follows form the linearity from the dynamics and fact the Everett supposes that the correlations induced by a good measurement are perfect.

Jeff Barrett
Note
That the observer would report that the two results agree in each element of the superposition together with the linear dynamics entails that the composite system is in an eigenstate of the observer reporting that she got the same result for both measurements even those the composite system is not an eigenstate of the observer reporting that she got any particular result for both measurements. This is the repeatability property of the bare theory.The repeatability result for the bare theory is easily reinterpreted as obtaining for agreement between two or more observers. If a second observer makes an ideal measurement of the same physical property as the first observer, then the two compare their measurement records, they will end up in an eigenstate or reporting that their results agree even though they would not be in an eigenstate of reporting any particular result. And, as relative facts, the observers' results would in fact agree at each branch.Everett goes further than the standard interpretation of states allows in suggesting that the observer in fact got a determinant result \emph{as a relative state} then got the same determinate result again \emph{at a branch}. The standard interpretation of states says nothing about relative states nor states at branches, nor does it say anything about the conditions under which events at different times might occur \emph{at the same branch}. Curiously, Everett himself has nothing to say concerning the diachronic identity of branches. While his relative state attributions are for sequences of records \emph{at a time}, he talks as if one can make sense of the same branch at different times but he does not explicitly assume this or say how. This may be because he is largely indifferent to metaphysical detail.In his discussion of an extended sequence of measurements, Everett will claim that it is this repeatability property that explains the appearance to the observer that the system has ``jumped'' into eigenstate of the observable being measured.

Jeff Barrett
Note
The thought experiment is one where one starts with an infinite collection of object systems all somehow in exactly the same physical state and one measures the same physical observable of each in turn and records the results in a sequence of memory registers. Again, Everett is not concerned with how one might start with such a state. Further, he is not worried about physical limitations on conducting a large number of independent measurements, recording the results as separable records, or carrying out calculations on the results without introducing spurious correlations with the environment. The aim of the examples is to probe the structure of the model of pure wave mechanics.

Jeff Barrett
Note
The initial separable state reflects a hypothetical situation that, given pure wave mechanics and what know about how physical systems interact with each other, would virtually never obtain. Moreover, one should never expect a real measurement interaction to perfectly correlate the states of two physical systems. Everett uses such idealized thought experiments to illustrate properties of the formal structure of the theory. One must then translate whatever conclusions one reaches for such experiments to conclusions that hold for more realistic physical situations.



We assume that the measurements are performed on the systems in the order
S1, S2, · · ·Sn. Then the total state after the first measurement is by Rule 1,

ψS1+S2+···+Sn+0
1 =

∑
i

aiφ
S1
i ψ

S2 · · ·ψSnψ0
[···α1

i ] (21)

(where α1
i refers to the first system, S1).

After the second measurement it is, by Rule 2,

ψS1+S2+···+Sn+0
2 =

∑
i,j

aiajφ
S1
i φ

S2
j ψ

S3 · · ·ψSnψ0
[···α1

i ,α2
j ] (22)

and in general, after r measurements have taken place (r ≤ n), Rule 2 gives
the result:

ψr =
∑

i,j,···k

aiaj · · · akφ
S1
i φ

S2
j · · ·φSr

k ψ
Sr+1 · · ·ψSnψ0

[···α1
i ,α2

j ,···αr
k] (23)

We can give this state, ψr, the following interpretation. It consists of a
superposition of states:

ψ′
ij···k = φS1

i φ
S2
j · · ·φSr

k × ψSr+1 · · ·ψSnψ0
[α1

i ,α2
j ,···αr

k] (24)

each of which describes the observer with a definite memory sequence
[α1

i , α
2
j , · · ·αr

k]. Relative to him the (observed) system states are the corre-

sponding eigenfunctions φS1
i , φ

S2
j , · · · , φ

Sr
k , the remaining systems,

Sr+1, · · · , Sn, being unaltered.
A typical element ψ′

ij···k of the final superposition describes a state of af-
fairs wherein the observer has perceived an apparently random sequence of
definite results for the observations. Furthermore the object systems have
been left in the corresponding eigenstates of the observation. At this stage
suppose that a redetermination of an earlier system observation (Sl) takes
place. Then it follows that every element of the resulting final superpo-
sition will describe the observer with a memory configuration of the form
[α1

i , · · ·αl
j, · · ·αr

k, α
l
j] in which the earlier memory coincides with the later—

i.e., the memory states are correlated. It will thus appear to the observer,
as described by a typical element of the superposition, that each initial ob-
servation on a system caused the system to “jump” into an eigenstate in a
random fashion and thereafter remain there for subsequent measurements
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Jeff Barrett
Note
Everett here introduces the notion of a \emph{typical element} of the superposition. The notion of a typical element of a set $S$ is characterized by specifying a measure over the set. A probability measure $\mu$ is a function that assigns a number between zero and one to each subset of $S$ such that for $Q, R \subset S (1) $\mu(S)=1$, (2) $\mu(R)=\mu(\bar{R})$, and (3) if $R \intersect Q=\empty$ then $\mu(R \union Q)=\mu(R)+\mu(Q)). It is also typically supposed that $\mu$ is similarly additive for any countable union of disjoints subsets of $S$.If one does not explicitly specify a measure, it is typically assumed that one intends a proportional counting measure that assigns to $R \subset S$ the ratio of the number of elements of $R$ to the total number of elements of $S$.When one says that a sequence is random, one might mean that there is no clear pattern to the sequence that one might exploit to significantly compress the sequence. If Everett means this, then the typicality claim he makes here is true for a broad collection of measures over the terms representing the superposition, including the proportional counting measure.Exactly what notion of typicality Everett has in mind will matter more later in his discussion of this experiment.

Jeff Barrett
Note
The resultant state is a superposition of states where the observer has a different sequence of measurement records in each. In the determinate-record basis, there is one term corresponding to each possible sequence of measurement results. The coefficient on each of these terms will depend only on the initial state of the object systems and the distribution of the records described by the term.For each particular specification of a sequence of measurement records for the observer, the systems that the observer has measured will be in corresponding relative states. Again, such relative facts do not themselves require any specification of a preferred basis. 



on the same system. Therefore—disregarding for the moment quantitative
questions of relative frequencies—the probabilistic assertions of Process 1
appear to be valid to the observer described by a typical element of the final
superposition.

We thus arrive at the following picture: Throughout all of a sequence
of observation processes there is only one physical system representing the
observer, yet there is no single unique state of the observer (which follows
from the representations of interacting systems). Nevertheless, there is a
representation in terms of a superposition, each element of which contains
a definite observer state and a corresponding system state. Thus with each
succeeding observation (or interaction), the observer state “branches” into
a number of different states. Each branch represents a different outcome
of the measurement and the corresponding eigenstate for the object-system
state. All branches exist simultaneously in the superposition after any given
sequence of observations.‡

The “trajectory” of the memory configuration of an observer performing
a sequence of measurements is thus not a linear sequence of memory config-
urations, but a branching tree, with all possible outcomes existing simulta-
neously in a final superposition with various coefficients in the mathematical

‡Note added in proof.—In reply to a preprint of this article some correspondents have
raised the question of the “transition from possible to actual,” arguing that in “reality”
there is—as our experience testifies—no such splitting of observer states, so that only one
branch can ever actually exist. Since this point may occur to other readers the following
is offered in explanation.

The whole issue of the transition from “possible” to “actual” is taken care of in the
theory in a very simple way—there is no such transition, nor is such a transition necessary
for the theory to be in accord with our experience. From the viewpoint of the theory all
elements of a superposition (all “branches”) are “actual,” none any more “real” than the
rest. It is unnecessary to suppose that all but one are somehow destroyed, since all the
separate elements of a superposition individually obey the wave equation with complete
indifference to the presence or absence (“actuality” or not) of any other elements. This
total lack of effect of one branch on another also implies that no observer will ever be
aware of any “splitting” process.

Arguments that the world picture presented by this theory is contradicted by experience,
because we are unaware of any branching process, are like the criticism of the Copernican
theory that the mobility of the earth as a real physical fact is incompatible with the
common sense interpretation of nature because we feel no such motion. In both cases the
argument fails when it is shown that the theory itself predicts that our experience will be
what it in fact is. (In the Copernican case the addition of Newtonian physics was required
to be able to show that the earth’s inhabitants would be unaware of any motion of the
earth.)
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Jeff Barrett
Note
This is just the earlier repeatability property in the context of a more complicated experiment.

Jeff Barrett
Note
One might summarize the discussion so far as follows: (1) in every term it will appear that measurements caused ``jumps'' insofar as the observer takes the repeatability of results to be the appearance of a jump and (2) in most terms on a broad range of measures of typicality it will appear as if the sequence of results was randomly determined insofar as every sequence of results will be represented by some term in the superposition and most sequences of results appear to be random.The discussion up to this point is meant to explain the random and discontinuous appearance of repeatable results in the context of pure wave mechanics. Everett has said nothing yet concerning how one might recover the values of the standard quantum probabilities. That is the qualitative question.Since the composite state after a finite number of measurements is not an eigenstate of the observer reporting that her measurement records are randomly distributed, appearances after a finite number of measurements cannot be explained by the standard interpretation of states. Rather, such appearances must be explained by typical relative states.The explanation Everett has in mind must be simple since he provides virtually no elaboration. Given Everett's notion of faithfulness, the explanation of the appearance of random collapse could simply be: for each of a broad collection of measures of typically, a typical relative state where the observer has a determinate outcome for each measurement is one where the relative state of the records appear to be random and repeatable, which is the the sort of empirical evidence that is explained in the standard collapse theory supposing that measurements lead to random discontinuous collapses of the quantum-mechanical state.

Jeff Barrett
Note
This is a clear and explicit stipulation that throughout the measurement interactions there is precisely one physical observer. While the observer has no well-defined determinate state to call her own, she does have perfectly well-defined relative states that are fully determined by the structure of correlations between subsystems.

Jeff Barrett
Note
In one of his most careful interpretational statements, Everett chooses to say that it is the observer's \emph{state} that branches, not the observer. This suggests the introduction of branches as a new physical indexical, not as the introduction of branches as a new type of physical entity. Of course, one might insist on reifying each possible value of the indexical in one's metaphysics in order to interpret branches as splitting physical worlds (in which case, one might be tempted to choose a preferred basis). Or one might simply use such splitting-worlds talk as shorthand for Everett's more careful relative-state talk.While he was clearly pressed to explain just this point, Everett seems not to have cared much about the metaphysical detail; rather, he shows that he is willing to describe the correlation structure exhibited by the formal model of pure wave mechanics in a variety of ways that suggest rather different metaphysical commitments.

Jeff Barrett
Note
Everett needs to say something like this since if only one branch existed, then he would arguably have simply recapitulated precisely the standard collapse formulation, where the one remaining branch would be the postmeasurement collapsed state.The long new footnote added in proof to the paper, however, indicates that readers wanted to know more about these branches and that Everett himself felt uncomfortable with this metaphysical assertion.If one does not like the metaphysical talk of the simultaneous existence of all of the branches, one might weaken the talk slightly by putting this point in terms of truth conditions: the relative states associated with all possible decompositions of the global state of every isolated system are simulataneously true as relative facts.

Jeff Barrett
Note
Two documents were broadly circulated earlier: the long draft thesis and the short thesis that formed the direct basis for this article. here Everett may well have in mind DeWitt's referee comments on the short thesis.One might suppose that there must be a transition from possible to actual only and that only one branch should be actual for at least two reasons. One is for the sake of direct empirical adequacy: we only see one measurement result in fact realized. This is the worry that Everett seeks to address here. One might also, however, take the very notion of probability to require that only one possibly is actualized. more specifically, one might take a probability to be a measure over various exclusive possibilities being the realized. Insofar as one holds this view of probability, and there is significant evidence that Everett himself does, he holds that pure wave mechanics is quantum mechanics \emph{without probability}.

Jeff Barrett
Note
For Everett, a theory is in accord with our experience if and only if it is empirically faithful as explained in Appendix II of the long thesis.

Jeff Barrett
Note
Everett does not take the branches to represent possible worlds where only one is actual; rather each branch is actual. One way to understand this in terms of truth conditions in the context of his relative-state formulation is that all of the relative facts represented by alternative decompositions of the global state and alternative selection of states for complement subsystems that are associated with a positive coefficients are in fact true as relative facts.

Jeff Barrett
Note
This is the explanation for why the branching process does not conflict with our direct empirical evidence.While the linear dynamics can be thought of as evolving each of the terms of a superposition as if it were the complete state of the system with the resulting global state being the superposition of the time-evolved terms, what Everett says here is at best misleading. Terms in the superposition can at least in principle interfere with each other; hence, exactly what other terms there are can matter to the evolution of any particular term. This is itself a consequence of the linear dynamics. In the context of the Wigner's Friend, experiment, for example, Wigner's \emph{A}-measurement result will show that the friend is in an entangle superposition of record states. Wigner might then tell the friend the outcome of his \emph{A}-measurement. If so, the friend will know that there is another branch friend. The moral is simply that branches are not, as Everett suggests here, causally closed under the linear dynamics. See Albert how to take a picture of another Everett world and Albert and Barrett on what it takes to be a world.That said, it would in practice be extremely difficult to re-interfere the friend branches as required by the Wigner's Friends story. The more physical degrees of freedom, the more thermodynamical noise, the more spurious collections with the environment, the more stable the physical records generated by a correlating interaction and the more difficult it would be to observe other Everett branches.

Jeff Barrett
Note
Pure wave mechanics with appropriate thermodynamical assumptions and the characterization of observers as physical systems that interact readily with their environments explains why one should not typically expect to find physical records of the splitting of observers. Insofar as physical records would be required to notice the process, that there are no physical records of splitting, the theory, together with some plausible background assumptions, explains why the splitting process would not be noticed.



model. In any familiar memory device the branching does not continue in-
definitely, but must stop at a point limited by the capacity of the memory.

In order to establish quantitative results, we must put some sort of mea-
sure (weighting) on the elements of a final superposition. This is necessary
to be able to make assertions which hold for almost all of the observer states
described by elements of a superposition. We wish to make quantitative
statements about the relative frequencies of the different possible results of
observation—which are recorded in the memory—for a typical observer state;
but to accomplish this we must have a method for selecting a typical element
from a superposition of orthogonal states.

We therefore seek a general scheme to assign a measure to the elements of
a superposition of orthogonal states

∑
i aiφi. We require a positive function

m of the complex coefficients of the elements of the superposition, so that
m(ai) shall be the measure assigned to the element φi. In order that this gen-
eral scheme be unambiguous we must first require that the states themselves
always be normalized, so that we can distinguish the coefficients from the
states. However, we can still only determine the coefficients, in distinction to
the states, up to an arbitrary phase factor. In order to avoid ambiguities the
function m must therefore be a function of the amplitudes of the coefficients
alone, m(ai) = m(|ai|).

We now impose an additivity requirement. We can regard a subset of the
superposition, say

∑n
i=1 aiφi, as a single element αφ′:

αφ′ =
n∑

i=1

aiφi. (25)

We the demand that the measure assigned to φ′ shall be the sum of the
measures assigned to the φi (i from 1 to n):

m(α) =
n∑

i=1

m(ai). (26)

Then we have already restricted the choice of m to the square amplitude
alone; in other words, we have m(ai) = a∗

i ai, apart from a multiplicative
constant.

To see this, note that the normality of φ′ requires that |α| = (
∑
a∗

i ai)
1
2 .

From our remarks about the dependence of m upon the amplitude alone, we
replace the ai by their amplitudes ui = |ai|. Equation (26) then imposes the
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Jeff Barrett
Note
Rather than a well-ordered list of physical measurement records, the observer is here associated with a branching tree of measurement records. Each branch on the tree is associated with a weight given by the coefficient associated with that branch.There is no problem understanding branches at a time relative to a choice of basis, but it is unclear how to identify branches over time. See the discussion in the introduction on transtemporal identity.

Jeff Barrett
Note
Everett now turns to the question of the appearance of the standard quantum statistics probability.

Jeff Barrett
Note
Everett explicitly recognizes that one must have a measure over possible selections in order to have a clear notion of typicality.

Jeff Barrett
Note
Rather than claim that pure wave mechanics entails a single canonical measure, Everett presents the situation as one where we use the theory together with a few background assumption to ``seek a general scheme'' for assign a typicality measure to the elements of a superposition. He finds one, but there are others he might have found under a different set of background assumptions. A particularly salient example of a different measure of typicality would have been a simple counting measure where each branch has the same weight.

Jeff Barrett
Note
That the measure be a positive function of the complex-valued coefficients is one of Everett's background assumptions. A simple counting measure would not satisfy this condition.

Jeff Barrett
Note
This is a further background assumption. The grounds for this constraint involve what one Everett believes one might know regarding the renomalized coefficients on the relative state of a subsystem of a composite system. If one could only know the coefficients up to a phase factor, one might take only their squared amplitudes to be significant.There are, however, quantum-mechanical predictions, such as the Aharonov-Bohm effect, that depend on the precise relative phase of each element of the superposition. Everett would likely not have known of such effects since they were not well-known until after Yakir Aharonov and David Bohm 1959 paper.

Jeff Barrett
Note
This condition is required for $m$ to be a measure over the elements of the superposition.

Jeff Barrett
Note
The claim is that the three specified conditions in the context of pure wave mechanics uniquely determine the norm-squared coefficient measure as a measure of typicality over branches or elements in a superposition. This is Everett's deduction of the standard quantitative statements concerning quantum probabilities.



requirement,

m(α) = m
(∑

a∗
i ai

) 1
2

= m
(∑

u2
i

) 1
2

=
∑

m(ui) =
∑

m(u2
i )

1
2 . (27)

Defining a new function g(x)

g(x) = m(
√
x) (28)

we see that (27) requires that

g
(∑

u2
i

)
=

∑
g(u2

i ). (29)

Thus g is restricted to be linear and necessarily has the form:

g(x) = cx (c constant). (30)

Therefore g(x2) = cx2 = m(
√
x2) = m(x) and we have deduced that m is

restricted to the form

m(ai) = m(ui) = cu2
i = ca∗

i ai. (31)

We have thus shown that the only choice of measure consistent with our
additivity requirement is the square amplitude measure, apart from an arbi-
trary multiplicative constant which may be fixed, if desired, by normalization
requirements. (The requirement that the total measure be unity implies that
this constant is 1.)

The situation here is fully analogous to that of classical statistical me-
chanics, where one puts a measure on trajectories of systems in the phase
space by placing a measure on the phase space itself, and then making as-
sertions (such as ergodicity, quasi-ergodicity, etc.) which hold for “almost
all” trajectories. This notion of “almost all” depends here also upon the
choice of measure, which is in this case taken to be the Lebesgue measure on
the phase space. One could contradict the statements of classical statistical
mechanics by choosing a measure for which only the exceptional trajectories
had nonzero measure. Nevertheless the choice of Lebesgue measure on the
phase space can be justified by the fact that it is the only choice for which
the “conservation of probability” holds, (Liouville’s theorem) and hence the
only choice which makes possible any reasonable statistical deductions at all.

In our case, we wish to make statements about “trajectories” of observers.
However, for us a trajectory is constantly branching (transforming from state
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Jeff Barrett
Note
This is the argument for uniqueness of the measure satisfying the specified constraints. Note that the measure $m$ is unique up to the constant $c$. The constant $c$ can be used as a renormalization factor and set so that $m$ is a probability measure over the elements of the superposition. That does not, however, mean that $m$ is a probability. If one requires that probabilities be measures of possibilities being realized, then $m$ cannot represent a probability even if it satisfies the conditions for being a probability measure insofar as all of the elements are in fact realized.For his part, Everett only wants to use $m$ as a measure of typicality. While it is unclear what the proper physical understanding of such typicality should be, he clearly has found in the model of the theory a typicality measure of the sort he stipulated that he wanted.

Jeff Barrett
Note
While Everett claims that the situation here is fully analogous to that of classical statistical mechanics, the analogy with classical statistical mechanics is at most partial in at least one significant sense. In both cases one is tempted to claim that there is one and only one canonical measure for the typicality of states: the norm-squared coefficient measure in pure wave mechanics and Lesbesgue or Gibbs measure in classical statistical mechanics. In both cases one appeals both to the structure of theory itself and to plausible-sounding background assumptions to argue for the conclusion. And in both cases, there has been severe and long lasting debate concerning the precise extent to which the privileged measure requires extra-theoretic background assumptions, which are in fact the most plausible, and on what grounds. But, for all its problems (see Albert 1999), the privileged typicality measures in classical mechanics have natural physical interpretations in terms of epistemic probabilities since precisely one classical micro state ever in fact obtains. Understanding the physical significance of Everett's typicality measure is not nearly so straighforward.

Jeff Barrett
Note
The justification that Everett favors for selecting the standard measure in classical statistical mechanics is that, given the classical dynamics, it is the only measure that assigns the same measure to a set of states $S_0$ at time $t_0$ as it does to the time-evolved image of $S_0$ at all other times. This fact captures the intuition that the epistemic probability that one assigns to a particular family of trajectories should not change over time in a deterministic theory. But, of course, this is only true under special circumstances and assuming that one does not learn or forget anything about the actual state of the system. 



to superposition) with each successive measurement. To have a requirement
analogous to the “conservation of probability” in the classical case, we de-
mand that the measure assigned to a trajectory at one time shall equal the
sum of the measures of its separate branches at a later time. This is precisely
the additivity requirement which we imposed and which leads uniquely to
the choice of square-amplitude measure. Our procedure is therefore quite as
justified as that of classical statistical mechanics.

Having deduced that there is a unique measure which will satisfy our re-
quirements, the square-amplitude measure, we continue our deduction. This
measure then assigns to the i, j, · · · kth element of the superposition (24),

φS1
i φ

S2
j · · ·φSr

k ψ
Sr+1 · · ·ψSnψ0

[α1
i ,α2

j ,···αr
k] (32)

the measure (weight)

Mij···k = (aiaj · · · ak)
∗(aiaj · · · ak) (33)

so that the observer state with memory configuration [α1
i , α

2
j , · · · , αr

k] is as-
signed the measure a∗

i aia
∗
jaj · · · a∗

kak = Mij···k. We see immediately that this
is a product measure, namely,

Mij···k = MiMj · · ·Mk (34)

where
Ml = a∗

l al

so that the measure assigned to a particular memory sequence [α1
i , α

2
j , . . . , α

r
k]

is simply the product of the measures for the individual components of the
memory sequence.

There is a direct correspondence of our measure structure to the proba-
bility theory of random sequences. If we regard the Mij···k as probabilities
for the sequences then the sequences are equivalent to the random sequences
which are generated by ascribing to each term the independent probabilities
Ml = a∗

l al. Now probability theory is equivalent to measure theory math-
ematically, so that we can make use of it, while keeping in mind that all
results should be translated back to measure theoretic language.

Thus, in particular, if we consider the sequences to become longer and
longer (more and more observations performed) each memory sequence of
the final superposition will satisfy any given criterion for a randomly gener-
ated sequence, generated by the independent probabilities a∗

l al, except for a
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Jeff Barrett
Note
This is different from Everett's earlier statement of additivity assumption. While the earlier statement involved the additivity of the measure associated with particular elements in a superposition at a time, this statement involves conservation of measure over branches across time. The change may have to do with wanting to tighten the analogy with the justification of the choice of measure in classical thermodynamics.

Jeff Barrett
Note
At some level of description the two justifications are clearly similar, but insofar as the classical justification depends on intuitions concerning ordinary epistemic probability for its plausibility, the analogy fails to hold insofar as one fails to understand ordinary epistemic probabilities in pure wave mechanics. The problem, of course, is that there is nothing to be uncertain of in pure wave mechanics and every possibility is actual.

Jeff Barrett
Note
Given the care that he had devoted to this point, Everett was clearly frustrated with the fact that readers such as Graham failed to understand that typicality can be defined with respect to any measure. On the other hand, that Graham considered the counting measure to be the obvious natural measure here serves to undermine Everett's argument that the unique natural measure of typicality over branches is given my the norm-squared coefficient measure.

Jeff Barrett
Note
This means that the measure assigned to a term in the superposition is equal to the probability that the standard formulation of quantum mechanics would assign to the memory sequence associated with that term if one supposes that there are no collapses of the states until one checks the memory sequence.

Jeff Barrett
Note
The reason that Everett insists that all results be translated back to measure theoretic language is that there are, strictly speaking, no probabilities in pure wave mechanics; rather, the measure derived above provides \emph{a standard of typicality} for elements in the superposition and hence for relative facts.



set of total measure which tends toward zero as the number of observations
becomes unlimited. Hence all averages of functions over any memory se-
quence, including the special case of frequencies, can be computed from the
probabilities a∗

i ai, except for a set of memory sequences of measure zero. We
have therefore shown that the statistical assertions of Process 1 will appear
to be valid to the observer, in almost all elements of the superposition (24),
in the limit as the number of observations goes to infinity.

While we have so far considered only sequences of observations of the
same quantity upon identical systems, the result is equally true for arbitrary
sequences of observations, as may be verified by writing more general se-
quences of measurements, and applying Rules 1 and 2 in the same manner
as presented here.

We can therefore summarize the situation when the sequence of obser-
vations is arbitrary, when these observations are made upon the same or
different systems in any order, and when the number of observations of each
quantity in each system is very large, with the following result:

Except for a set of memory sequences of measure nearly zero,
the averages of any functions over a memory sequence can be cal-
culated approximately by the use of the independent probabilities
given by Process 1 for each initial observation, on a system, and
by the use of the usual transition probabilities for succeeding ob-
servations upon the same system. In the limit, as the number of
all types of observations goes to infinity the calculation is exact,
and the exceptional set has measure zero.

This prescription for the calculation of averages over memory sequences
by probabilities assigned to individual elements is precisely that of the con-
ventional “external observation” theory (Process 1). Moreover, these predic-
tions hold for almost all memory sequences. Therefore all predictions of the
usual theory will appear to be valid to the observer in amost [sic] all observer
states.

In particular, the uncertainty principle is never violated since the latest
measurement upon a system supplies all possible information about the rel-
ative system state, so that there is no direct correlation between any earlier
results of observation on the system, and the succeeding observation. Any
observation of a quantity B, between two successive observations of quantity
A (all on the same system) will destroy the one-one correspondence between
the earlier and later memory states for the result of A. Thus for alternating
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Jeff Barrett
Note
This is true for any standard of \emph{random sequence} for which the limit of the ratio of length-$n$ random memory sequences to the total number of length-$n$ memory sequences goes to zero as $n$ gets large since the product measure associated with each term goes to zero. See Barrett (1999, limiting properties of the bare theory).

Jeff Barrett
Note
More precisely, as the number of measurements gets large, the limit of the sum of the norm-squared coefficient measure associated with those elements of the superposition where the relative frequencies differ from those predicted by the standard collapse theory by more than $\epsilon$ goes to zero for all $\epsilon>0$. And, for any large enough finite number of measurements, a typical element of the superposition written in the determinate-record basis will exhibit measurement records that closely accord with the standard quantum statistics. But the significance of these facts concerning the formal correlation structure depends on precisely how one understands the observer and exactly what the elements in the superposition are supposed to represent.On the bare theory, where there is only one observer, no relative-states, and no splitting of any sort, the limiting properties indicate the propensities of an idealized to report the standard quantum statistics in the limit as the number of observations gets large. In an interpretation of pure wave mechanics where there is a splitting process that generates multiple copies of the observer, one for each term in the state written in the determinate-memory-sequence basis, the limiting properties indicate the statistical properties of a typical observer selected in the norm-squared coefficient measure. In order to get any emprical predictions from the theory, one must then suppose \emph{as a principle of one's theory} that it is this standard of typicality that is relevant to successful empirical prediction.

Jeff Barrett
Note
It is easy to show that the limiting properties hold for any collection of observables on any collection of physical states as long as there is no finite upper bound to the number of times each of the observables is measured of a system in each of the states.

Jeff Barrett
Note
Here Everett extends the claim to averages for any function over a memory sequence. This is his most general statement of the limiting properties of pure wave mechanics. Regardless of how one understands these properties, Everett has found a clear sense in which the correlation model of pure wave mechanics contains within its structure a measure that is closely related to the probability measure that shows up in Process~1 of the standard collapse theory.

Jeff Barrett
Note
The claim here concerns most relative states of a \emph{single} observer. That is, Everett takes it as sufficient to deducing the standard statistical predictions of quantum mechanics that one show that almost all (in the norm-squared coefficient measure) relative states that describe an observer as having a determinate sequence of measurement records also describe those records as being distributed by the standard quantum statistics. There are no random, chance events in the theory and there is no appeal to epistemic probabilities. Rather, the deduction simply involves the statistical properties of a typical memory sequence in a precisely specified sense of typical. How to best understand the formal limiting properties of the model of pure wave mechanics remains open.



observations of different quantities there are fundamental limitations upon
the correlations between memory states for the same observed quantity, these
limitations expressing the content of the uncertainty principle.

As a final step one may investigate the consequences of allowing several
observer systems to interact with (observe) the same object system, as well
as to interact with one another (communicate). The latter interaction can be
treated simply as an interaction which correlates parts of the memory con-
figuration of one observer with another. When these observer systems are
investigated, in the same manner as we have already presented in this section
using Rules 1 and 2, one finds that in all elements of the final superposition:

1. When several observers have separately observed the same quantity in
the object system and then communicated the results to one another they find
that they are in agreement. This agreement persists even when an observer
performs his observation after the result has been communicated to him by
another observer who has performed the observation.

2. Let one observer perform an observation of a quantity A in the ob-
ject system, then let a second perform an observation of a quantity B in
this object system which does not commute with A, and finally let the first
observer repeat his observation of A. Then the memory system of the first
observer will not in general show the same result for both observations. The
intervening observation by the other observer of the non-commuting quan-
tity B prevents the possibility of any one to one correlation between the two
observations of A.

3. Consider the case where the states of two object systems are corre-
lated, but where the two systems do not interact. Let one observer perform
a specified observation on the first system, then let another observer perform
an observation on the second system, and finally let the first observer repeat
his observation. Then it is found that the first observer always gets the same
result both times, and the observation by the second observer has no effect
whatsoever on the outcome of the first’s observations. Fictitious paradoxes
like that of Einstein, Podolsky, and Rosen8 which are concerned with such
correlated, noninteracting systems are easily investigated and clarified in the
present scheme.

8Einstein, Podolsky, and Rosen, Phys. Rev. 47, 777 (1935). For a thorough discussion
of the physics of observation, see the chapter by N. Bohr in Albert Einstein, Philosopher-
Scientist (The Library of Living Philosophers, Inc., Evanston, 1949).
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Jeff Barrett
Note
This short paragraph is an implicit reference to Everett's extended discussion of approximate measurement, uncertainty, and information in the long thesis. There are at least two ways one might make sense of sequences of measurements: as claims about the statistical properties of record-sequences at a time and as claims about what would happen in a particular branch over time. What Everett says here can be interpreted either way, but the second option requires that one is able to track the identity of a branch across time, which, again, is not something that Everett explicitly addresses.

Jeff Barrett
Note
Communication between observers for Everett is nothing more than an interaction that induces a physical correlation between the records of one observe and the other. Everett's general claim here follows from properties of the correlation structure that models pure wave mechanics.

Jeff Barrett
Note
This corresponds to the agreement property of the bare theory.

Jeff Barrett
Note
That is, there will be some terms in the superposition at a time (or branches across time, insofar as one can identify diachronic branches with synchronic memory configurations) where the first observer's first and second measurement results fail to agree.

Jeff Barrett
Note
While he seems to side with Bohr against Einstein in this passage, Everett believed that pure wave mechanics would reconcile the positions of Bohr and Einstein. See the short paper on probability.There is a sense in which what Everett says here is true of pure wave mechanics, but this is only because every possible result is realized as a relative fact for each of the EPR observers and because precisely how one is to understand the branches is left open. If each EPR observer somehow got only one result, then the theory would, like the standard collapse theory or a hidden-variable theory like Bohmian mechanics, be incompatible with the constraints of relativity insofar as the first observer's result determines the second observer's result. Or if one understands branches as splitting worlds, then the measurement of the first observer splits the world for both, but insofar as there can be no physical matter of fact concerning which of two space-like separated observations occurred first, the resultant theory would be  incompatible with the constraints of special relativity (since one could ask which of the two observers split the world). This, by the way, provides a very good reason for one not to understand the splitting of observer states as a physical process that involves the splitting of the physical world. Specifying the conditions under which such a split would occur (which would amount to choosing a preferred basis) would be precisely as difficult as specifying the conditions under which a collapse of the quantum-mechanical state would occur in the standard collapse theory.



Many further combinations of several observers and systems can be stud-
ied within the present framework. The results of the present “relative state”
formalism agree with those of the conventional “external observation” for-
malism in all those cases where that familiar machinery is applicable.

In conclusion, the continuous evolution of the state function of a com-
posite system with time gives a complete mathematical model for processes
that involve an idealized observer. When interaction occurs, the result of
the evolution in time is a superposition of states, each element of which as-
signs a different state to the memory of the observer. Judged by the state of
the memory in almost all of the observer states, the probabilistic conclusion
[sic] of the usual “external observation” formulation of quantum theory are
valid. In other words, pure Process 2 wave mechanics, without any initial
probability assertions, leads to all the probability concepts of the familiar
formalism.

6. Discussion

The theory based on pure wave mechanics is a conceptually simple, causal
theory, which gives predictions in accord with experience. It constitutes a
framework in which one can investigate in detail, mathematically, and in a
logically consistent manner a number of sometimes puzzling subjects, such
as the measuring process itself and the interrelationship of several observers.
Objections have been raised in the past to the conventional or “external
observation” formulation of quantum theory on the grounds that its proba-
bilistic features are postulated in advance instead of being derived from the
theory itself. We believe that the present “relative-state” formulation meets
this objection, while retaining all of the content of the standard formulation.

While our theory ultimately justifies the use of the probabilistic interpre-
tation as an aid to making practical predications, it forms a broader frame in
which to understand the consistency of that interpretation. In this respect
it can be said to form a metatheory for the standard theory. It transcends
the usual “external observation” formulation, however, in its ability to deal
logically with questions of imperfect observation and approximate measure-
ment.

The “relative state” formulation will apply to all forms of quantum me-
chanics which maintain the superposition principle. It may therefore prove a
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Jeff Barrett
Note
Everett does not consider the difference between a collapse theory and pure wave mechanics in the context of a Wigner's Friend experiment. Either he did not understand what was at stake here empirically, or here he is identifying ``the external observation'' formulation with something closer to Bohr's Coppenhagen interpretation, which was perhaps vague enough that one might have taken it to make the same empirical predictions as pure wave mechanics for $A$-type measurements.

Jeff Barrett
Note
One can represent idealized observers in the formal model of pure wave mechanics.

Jeff Barrett
Note
This is true insofar as such probabilistic conclusions are understood as assertions concerning the statistical properties of sequences of measurement records in the memory of an idealized observer at a time.

Jeff Barrett
Note
While this is clearly an overstatement, Everett has shown that the standard statistical properties of empirical records in quantum mechanics hold for most relative records states in the norm-squared measure of most. He has then found a parameter in the model of pure wave mechanics is closely associated with the representation of ideal observers in the model and that covaries with standard quantum probabilities. Indeed, it is arguably precisely this that constitutes his deduction of the standard quantum probabilities in pure wave mechanics. 

Jeff Barrett
Note
That is, the relative-state theory is simple and deterministic (hence probability-free for Everett).This is the first place that Everett mentions the \emph{predictions} of pure wave mechanics. From what he says, it must be that he is taking the predictions of the theory to be typical record sequences in the specified special sense of typical. If so, this is a principle that one would have to add to the relative state formulation for it to make statistical predictions. One would have to add this as a principle insofar as Everett's measure of typicality is not in fact uniquely determined from the theory alone or together with independently accepted physical conditions.

Jeff Barrett
Note
The probabilistic features, or more precisely the standard statistical expectations of quantum mechanics wherever it makes coherent predictions, are derived from pure wave mechanics together with the specification of a measure of typicality and an (implicit) stipulation that one should expect to see a typical sequence of memory records.Under such assumptions, the relative-state formulation allows one to capture most of the standard talk of quantum probabilities without there being any probabilities in the theory.While there is a sense in which the content of the standard theory can be found in the correlation structure of relative states, many of the concrete predictions of the standard theory are simply false in pure wave mechanics: that there is precisely one absolute record state after a measurement, that there are random collapses of the state, that Wigner's Friend is not in an eigenstate of the $A$-observable, etc.

Jeff Barrett
Note
Pure wave mechanics alone does not justify the use of anything for practical predictions. Everett has shown that one can find a parameter that covaries with the usual quantum probabilities in the correlation model of pure wave mechanics. One may, if one wishes, then use this parameter to regiment one's practical expectations. But the pure wave mechanics alone does not recommend doing so nor does it even indicate what would go wrong if one failed to do so.

Jeff Barrett
Note
The claims made in this section go well beyond what has been argued in the paper so far. One might seek to bridge the gap between what Everett has shown formally and what he claims here by reinterpretations the claims here to mesh with what he has in fact accomplished. Or one might take the project as presented earlier in the paper to be incomplete and seek to fill in the details so as to support the conclusions of this section.

Jeff Barrett
Note
While he does not explain here how the the theory handles approximate measurement, this is a main theme in the long thesis.

Jeff Barrett
Note
The generality of the theory is significant for Everett. One of the primary virtues of the relative-state formulation is that it is suitable as a foundation for engineering future theories. See the long thesis appendix II.Everett is not committed to the details of a Hilbert space representation of states. All he requires is that there be a linear space where a linear dynamics can be taken to hold.



fruitful framework for the quantization of general relativity. The formalism
invites one to construct the formal theory first, and to supply the statistical
interpretation later. This method should be particularly useful for inter-
preting quantized unified field theories where there is no question of ever
isolating observers and object systems. They all are represented in a single
structure, the field. Any interpretative rules can probably only be deduced
in and through the theory itself.

Aside from any possible practical advantages of the theory, it remains
a matter of intellectual interest that the statistical assertions of the usual
interpretation do not have the status of independent hypotheses, but are
deducible (in the present sense) from the pure wave mechanics that starts
completely free of statistical postulates.
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Jeff Barrett
Note
The main requirement is that one be able to find a linear space to represent superpositions of mass-energy distributions and gravitational states.

Jeff Barrett
Note
The methodology is to study the properties of the theory that follow from the linearity of the space and the dynamics alone, then introduce a statistical interpretation later. The should presumably follow the present model where one introduces a measure of typicality, then stipulates that one should expect typical physical measurement records.

Jeff Barrett
Note
When applied to field theory, Everett envisions the theory describing the superposition of a single field. One of the puzzles here will be to identify subsystems that might represent idealized observers in such a structure. While this would require rather more subtlety than Everett discussion of observation here, one strategy might be to take local field states to represent physical measurement records.The record observable in a field theory would, of course, be nothing like the position of a pointer on a measuring device.

Jeff Barrett
Note
That much of the statistical structure of standard quantum mechanics can be found in the correlation model of pure wave mechanics is clearly is a matter of  intellectual interest. Further, it makes the specification of Process~1 in the standard theory look at least somewhat redundant.If one does not take the relative-state formulation to be entirely adequate, then one would presumably still want to make use of the suggestive structural properties of pure wave mechanics to explain the statistical features of quantum mechanics without adding something to the theory that is already there in the present sense.Note that the deduction of probabilities in the present sense is meant to be analogous to the deduction of probabilities in classical statistical mechanics. While Everett might have found such a suggestion intriguing, the deduction here does not involve Gleason's theorem, considerations of rationality, caring measures, or such; rather, it turns solely on the limiting properties of typical relative records in the norm-squared measure of typically in idealized sequences of linear measurements in the model of pure wave mechanics.




