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Author’s Comments

This is a revision and expansion of an earlier (2009) paper that contained a calculational error in the derivation
of Equation 3.1, which was pointed out to me by an observant graduate student. The mathematics in this
revision is now correct, while providing a better overview of Hermann Weyl’s 1918 attempt to unify the forces of
gravity and electromagnetism.

Introduction

Einstein’s general theory of relativity appeared in November 1915, and in spite of the theory’s largely unfamiliar
and obtuse (at the time) mathematical formalism, within a few years many researchers had mastered the theory
and were actively involved in its further development. One of its most passionate champions was the German
mathematical physicist Hermann Weyl (1885-1955), who investigated many of the theory’s applications in
physics and cosmology. More notably, Weyl attempted to generalize the theory’s Riemannian basis in what
turned out to be a failed search for a unification of the gravitational and electromagnetic fields.

Weyl’s initial attempts at unification took place in early 1918, although he was undoubtedly building on earlier
work. Einstein’s then-new notion that gravitational dynamics was a geometrical consequence of the presence of
matter and energy in a four-dimensional space-time continuum represented a tempting invitation to many
others to see if the only other known force at the time, electrodynamics, could also be described as a
geometrical construct. Weyl arguably took this idea further than anyone else at the time but his unification
scheme, initially hailed by Einstein as “genius,” contained a fatal flaw that was spotted by none other than
Einstein himself. Weyl continued to explore the theory until 1921 but, unable to adequately defend it from
Einstein’s criticism, he abandoned the theory.

Although his theory was a failure, Weyl’s work is important because in 1929 he resurrected his basic idea (which
he called gauge invariance) and applied it to then still-emerging field of quantum theory. Gauge invariance is
now recognized as one of the milestones of quantum physics, and is today a foundational aspect of all modern
quantum theories.

The mathematical particulars of Weyl’s 1918 theory are discussed in detail elsewhere on my website.
Consequently, here I restrict myself to the derivation of the equations of motion from an expanded version of
Weyl’s action. I also present an interesting cosmological aspect of Weyl’s theory, although I am under no
illusions that it has anything to do with reality. Indeed, Weyl’s theory is recognized today as a failure, but there
are aspects of Weyl’s attempt that are genuinely intriguing, particularly with respect to its possible cosmological
implications.

1. Notation

Repeated indices are summed. All integrals are four-dimensional. Following Adler et al., partial derivatives are
denoted with a single subscripted bar: Fµν|λ = ∂ Fµν/∂ xλ = ∂λFµν, etc., while covariant differentiation is
denoted by a double bar. In Riemannian geometry the coefficient of affine connection is the Christoffel symbol

§

α
µν

ª

=
1
2

gαβ
�

gµβ |ν + gβν|µ − gµν|β
�

while in Weyl’s geometry it is

Γ αµν =
§

α
µν

ª

−δαµφν −δ
α
νφµ + gµνgαβφβ
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where φµ is a vector field that Weyl identified with the electromagnetic 4-potential. Lastly, some covariant
derivatives in Weyl’s geometry are:

gµν||α = 2gµνφ (1.1)

gµν ||α = −2gµνφα (1.2)
�p

−g
�

||α = 4
p

−gφα (1.3)

2. The Einstein and Weyl Actions

We will assume that the student is already familiar with the variational principle as it is applied to the so-called
Einstein-Hilbert action which, complete with terms representing the electromagnetic field and its source, is

I =

∫

p

−g
�

R+
1
4

FµνFµν
�

d4 x

Here Fµν = φµ|ν −φν|µ, where φµ is the 4-potential. The Einstein-Hilbert action is thus based on a
coordinate-independent Lagrangian density that is composed of the Ricci scalar R and the electromagnetic field.
Restriction of the variation of this action with respect to the metric tensor gµν and the potential φµ will result in
two independent terms: the coefficient of the variation δgµν and that of the variation δφµ. Setting each of
these coefficients to zero will give us the field equations associated with the action. We anticipate that the
coefficient of δgµν will correspond to gravitation, as in fact it does, while that of the variation δφµ will
correspond to electromagnetism. Thus,

δI =

∫

p

−g
�

Gµν δgµν +Wµδφµ
�

d4 x (2.1)

where

Gµν = Rµν −
1
2

gµν R and Wµ =
1
p
−g

�p

−gFµν
�

|ν (2.2)

Since δI = 0, both of these quantities must vanish; this gives Einstein’s gravitational field equations Gµν = Tµν
(where Tµν is the electromagnetic stress-energy tensor), along with (

p
−gFµν)|ν = 0. Note that the Einstein and

stress-energy tensors are required to be divergenceless.

Weyl’s 1918 theory was based on his assertion that the geometry of the world should not change when the
metric tensor of Riemannian geometry gµν is rescaled; that is, if gµν→ λgµν, where λ(x) is an arbitrary scalar
function of position, then the laws of Nature should not change. Weyl saw this regauging of the metric as a new,
beautiful type of symmetry that should be reflected in the action Lagrangian. Weyl went on to develop a revised
form of Riemannian geometry in which the associated connection term Γ αµν is itself invariant with regard to
metric regauging. This observation considerably strengthened Weyl’s belief that gauge or (conformal)
invariance was a symmetry that Nature would use in shaping her laws. Since δΓ αµν = 0 in Weyl’s geometry, the

Riemann-Christoffel tensor and its contracted form, the Ricci tensor, are both invariant: δRλµνα = 0 and
δRµα = 0. Thus, the two most fundamental quantities of differential geometry are conformally invariant.
Furthermore, Weyl knew that the electromagnetic tensor Fµν was itself invariant with respect to a gauge
transformation of the 4-potential. In view of these observations, Weyl set out to find an action Lagrangian that
would reflect these symmetries. Let us do that now.

First, some preliminaries. Remember that in Weyl’s theory the covariant derivative of the metric tensor is not
zero: gµν||α = −2gµνφα, while (

p
−g) ||α = 4

p
−gφα. You’ll need these expressions to actually carry out the

variations on the action, particularly those involving partial integration.

The simplest scale invariant action in Weyl’s geometry utilizes the square of the Ricci scalar, and this is the action
Weyl used to develop his original theory. In view of the Einstein-Hilbert action given above, we will write the
Weyl action as

I =

∫

p

−g
�

R2 +
1
4

FµνFµν
�

d4 x (2.3)

2



Einstein and others objected to the fact that the R2 term is of fourth order in the metric tensor but, as we will
see, this objection can be avoided.

3. Variation of the Weyl Action

Variation of Weyl’s action with respect to φµ presents no problems. Variation with respect to gµν is
straightforward but tedious, although it can be considerably simplified by utilizing Palatini’s method along with
local coordinates, in which all terms involving partial derivatives of the metric and its determinant vanish
(except for δgµν|α and δ(

p
−g)|α and their covariant derivative variants, which require integration by parts). In

the end we find that

δI =

∫

p

−g
�

Wµν δgµν +Wµδφµ
�

d4 x

where

Wµν = 2R
�

Rµν −
1
4

gµνR
�

+
1
2

�

gαβ FµαFνβ −
1
4

gµνFαβ Fαβ
�

+ 8Rφµφν + 8R|µφν − 2gµνgαβR|α||β

+2R|µ||ν + 4Rφµ||ν − 4gµνgαβRφα||β − 8gµνgαβR|αφβ − 8gµνgαβRφαφβ = 0 (3.1)

and

Wµ = 24gµν
�

Rφν +
1
2

R|ν

�

−
1
p
−g

�p

−gFµν
�

|ν = 0 (3.2)

or
p

−g Sµ = 24
p

−g gµν
�

Rφν +
1
2

R|ν

�

(3.3)

where we have set
p
−gSµ = (

p
−gFµν)|ν. Thus, the electromagnetic source vector appears in Weyl’s theory in

terms of the Ricci scalar and its first derivative.

The electromagnetic source vector density is a conserved quantity, meaning that its covariant divergence
vanishes. We therefore demand that

�p

−gSµ
�

||µ =
�p

−gFµν
�

|ν||µ = 0

Taking the divergence of (3.3), we have

p

−g gµν
�

2Rφµφν + 2R|µφν + Rφµ||ν +
1
2

R|µ||ν

�

= 0

Dropping the
p
−g gµν term, we then have the convenient identity

Rφµ||ν = −2Rφµφν − 2R|µφν −
1
2

R|µ||ν (3.4)

This identity has no obvious interpretation, but it can be used to simplify the Wµν term. Inserting the identity
(3.4) into (3.1), most terms drop out and we are left simply with

Wµν = 2R
�

Rµν −
1
4

gµνR
�

+
1
2

�

FµαFνβ gαβ −
1
4

gµνFαβ Fαβ
�

(3.5)

Contraction with gµν then gives the trace of Wµν, which vanishes as required by virtue of the tracelessness of the
two terms in (3.5).

4. Cosmological Aspects of Weyl’s Theory

All of this is very suggestive. Weyl believed that his geometry had produced a variant of Einstein’s equations in
which electromagnetism is embedded into the geometry.
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In the absence of an electromagnetic field Weyl’s geometry reduces to Riemannian geometry, but the Weyl field
equations remain intact:

R
�

Rµν −
1
4

gµνR
�

= 0

So here we have two possible solutions,
R= 0,

Rµν −
1
4

gµνR= 0 (4.1)

If we reject the solution R= 0, the Ricci scalar can be divided out and we are left with the set of purely
second-order equations in (4.1), which are easily solved. Let us assume the standard Schwarzschild line element
for a radially symmetric gravitational field:

ds2 = eν
�

d x0
�2 − eλdr2 − r2dθ 2 − r2 sin2 θdφ2

where ν and λ are functions of the radial parameter r alone. From any general relativity text, we find that the
Ricci terms are

R00 = eν−λ
�

−
1
2

v′′ +
1
4
ν′λ′ −

1
4

�

ν′
�2 −

1
r
ν′
�

Rr r =
1
2

v′′ −
1
4
ν′λ′ +

1
4

�

ν′
�2 −

1
r
λ′

Rθθ = e−λ
�

1+
1
2

rν′ −
1
2

rλ
�

− 1

Rφφ = sin2 θ Rθθ

where the primes refer to partial differentiation with respect to r. Similarly, from R= gµνRµν we find that

R= e−λ
�

−v′′ +
1
2
ν′λ′ −

1
2

�

ν′
�2 −

2
r
ν′ +

2
r
λ′ −

2
r2

�

+
2
r2

From these expressions it is easy to show that λ′ = −ν′ (a result that is also obtained from the Schwarzschild
solution of Einstein’s equations). Ignoring the integration constant, we then have λ= −ν. With this result it is
then easy to show that

eν = 1−
2m
r
−λr2 (4.2)

eλ =
�

1−
2m
r
−λr2

�−1

(4.3)

R= 12λ (4.4)

where m= GM/c2 is the usual reduced gravitational mass and λ is a constant. These solutions are the same as
those obtained from the Einstein field equations but with the addition of a term involving r2 (obviously, this
prevents the Weyl solution from being Minkowskian at great distances).

This is a most interesting result in view of the following considerations. Cartan showed that the most general
form of the Einstein free-space field equations is

Rµν −
1
2

gµνR+Λgµν = 0 (4.5)

where Λ is Einstein’s cosmological constant. Contraction of this expression shows that we can identify the Ricci
scalar with this constant via R= 4Λ. But if we insert this result back into (4.5), we have precisely the Weyl
result (4.1). We therefore see that Weyl’s field equations automatically relate the Ricci scalar to the cosmological
constant. This also justifies our assumption that R is a non-zero constant.

It is obvious that if the Ricci scalar R is sufficiently small its effects on the field equations will be negligible, and
Weyl’s theory becomes indistinguishable from Einstein’s (Rµν = 0). Consequently, all the usual tests of general
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relativity—gravitational red shift, radar delay, perihelion shift of Mercury, bending of light—are satisfied to the
same extent using Weyl’s approach.

There is one more surprise. It is well known that, to first order, the usual Newtonian result for gravitation can be
approximated by g00 = 1+ 2ϕ/c2, where ϕ = −GM/r is the Newtonian gravitational potential, the classical
quantity responsible for the attraction between two massive bodies. But in Weyl’s theory we have an additional
term due to the non-vanishing of the cosmological constant:

ϕ = −
GM

r
−

1
2
λc2r2

Depending on the sign of λ, the effect of this extra term is to either strengthen or weaken the acceleration of a
test particle, but here this additional acceleration is independent of any nearby mass. The extra acceleration
arises from the peculiarity of the Weyl geometry itself, but it implies that the origin of the coordinate system
used is special in some way; if r is a distance, then distance from what? Evidently, the origin plays a singular
role here, in contradiction to the demands of relativity.

Cosmologists have known for some time that galactic rotation rates do not obey Newtonian gravity—the
estimated mass of most galaxies is too small to support the observed high velocities of stars far from their
galactic cores. This has resulted in the dark matter hypothesis, which posits the existence of some kind of exotic,
unseen matter that permeates galaxies and provides the required gravitational boost. At the other end of the
cosmological spectrum is the observation that the expansion of the universe appears to be accelerating, not
slowing down as originally thought. This has given rise to the dark energy hypothesis, which assumes the
existence of some kind of repulsive energy field permeating the universe that serves to speed up the expansion.
Could these observations be somehow due to a non-zero cosmological constant, which we have shown appears
in the Weyl equations of motion? (Adler has suggested a way to actually measure Λ. Take a large, very heavy,
evacuated spherical shell and set it out in deep space. Then place a small test particle at the very center and see
if the particle moves. If all effects such as external gravitational and electromagnetic fields can be eliminated,
then a displacement of the particle might provide conclusive evidence of a non-zero cosmological constant.)

5. Final Comments

One may rightly wonder why Weyl’s theory can be considered a unified field theory, considering the fact that we
were compelled to utilize the electromagnetic tensor Fµν in the Weyl action Lagrangian from the start. After all,
the Einstein-Hilbert action also contains the electromagnetic part, and it was never considered “unified” in any
substantive sense of the term. But what makes Weyl’s theory different is Equation (3.3), which effectively ties
electromagnetism to the metric tensor and the Ricci scalar R, both of which are fundamental geometric
quantities. In this sense alone, the Weyl theory can indeed be considered a unified theory of the gravitational
and electromagnetic fields.
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