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Weyl's Geometry and Physics 

N a t h a n  R o s e n  1 
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It is proposed to remove the diJficulty o f  nonintegrability of  length in the Weyl 
geometry by modifying the law of  parallel displacement and using "standard" 
vectors. The field equations are derived fi'om a variational principle slightly 
different from that of  Dirac and involving a parameter a. For ~ = 0 one has the 
electromagnetic field. For ~ < 0 there is a vector meson field. This could be the 
electromagnetic field with finite-mass photons, or it could be a meson field 
providing the "missing mass" of  the universe. In cosmological models the two 
natural gauges are the Einstein gauge and the cosmic gauge. With the latter the 
universe has a f ixed size, but the sizes o f  small systems decrease with time and 
their masses and energies increase, thus producing the Hubble effect. The field 
of  a particle in this gauge is investigated, and it leads to an interesting solution 
of  the Einstein equations that raises a question about the Schwarzschild 
solution, 

1. INTRODUCTION 

After Einstein (1) put forth his general theory of relativity, which provided a 
geometrical description of gravitation, Weyl ~) proposed a more general 
theory that also included a geometrical description of electromagnetism. In 
the case of general relativity one has a Riemannian geometry with a metric 
tensor g,~. If a vector undergoes a parallel displacement, its direction may 
change, but not its length. In Weyl's geometry, in addition to the metric 
tensor, there is also a vector ~ .  For a vector undergoing parallel 
displacement, not only the direction, but also the length, may change, and 
the change of length depends on 4 , .  If the vector is carried from point A to 
point B, its length at B will in general depend on the path between the two 
points, i.e., length is not integrable. One can introduce an arbitrary standard 
of length, or gauge, at each point. Under a transformation of the gauge the 
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vector 0, is changed by the addition of the gradient of a scalar function. This 
vector is identified with the potential vector describing the electromagnetic 
field. 

Weyl obtained the field equations with the help of a variational prin- 
ciple. These equations included the Maxwell equations for the elec- 
tromagnetic field. However, there was a difficulty: in order to get satisfactory 
equations for the gravitational field, Weyl had to choose a special gauge, one 
in which the curvature scalar was constant. 

Weyl's theory was rejected by most physicists because of the fact that, 
in the presence of an electromagnetic field, length is nonintegrable. This 
implies that some properties of elementary particles should depend on their 
past histories, which is in contradiction to the observed uniformity of their 
properties. 

Not long ago Dirac (3) revived Weyl's theory in connection with his 
large-number hypothesis. There exist certain large, dimensionless numbers in 
nature of abom the same order of magnitude, 10 39, which are difficult to 
explain, such as the ratio of the electric to the gravitational force between an 
electron and a proton, the ratio of the age of the universe to the charac- 
teristic atomic time e2 /mc  3 (e and m are the electronic charge and mass), 
and the square root of the number of baryons in the universe. Dirac's large- 
number hypothesis asserts that such numbers are connected. In particular, 
since the first one is proportional to 1/G, where G is Newton's gravitational 
constant, and the second one is proportional to t, the age of the universe, 
Dirac concluded that G varies as 1/t. Since Einstein's general relativity 
theory gives a constant value for G, Dirac made use of Weyl's theory in 
order to have G vary with the time in accordance with his large-number 
hypothesis. 

As for the difficulty with the nonintegrability of lengths, Dirac assumed 
that in practice one makes use of two different intervals between neighboring 
events in spacetime. Measurements in the laboratory with the help of 
apparatus fixed by the atomic properties of matter give an interval ds A . This 
interval refers to atomic units and does not depend on an arbitrary gauge. 
On the other hand, there is an interval ds e which is associated with the 
Einstein equations. This is modified by the Weyt theory so that it is nonin- 
tegrable under parallel displacement, and one must therefore refer it to an 
arbitrary gauge in order to get a definite value. The metric ds E cannot be 
measured directly, but reveals itself through its influence on the motion of 
heavenly bodies. 

Dirac modified the variational principle that Weyl had used. He 
introduced a Lagrangian multiplier involving a scalar fl into the variational 
principle and was thus able to get satisfactory field equations without having 
to impose a special gauge. This scalar, or gauge function,/? changes under a 
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gauge transformation. Pietenpol et al. (4) criticized Dirac's work by showing 
that, with the help of fl, one can get field variables that are independent of 
the gauge, so that the field equations are just the Einstein-Maxwell 
equations. According to them, the Weyl gauge invariance of the theory thus 
seems to be devoid of physical constent. However, Gregorash and Papini (5) 
pointed out that there is nevertheless a fundamental difference between the 
Einstein-Maxwell theory and that of Weyt in that in the latter the elec- 
tromagnetic field is part of the geometry. 

The Weyl-Dirac formalism has also been used in the absence of an 
electromagnetic field and has been referred to as a scale-covariant theory of 
gravitation. As an example, one might mention the work by Canuto et al., (6) 

who chose the gauge so as to have G vary inversely to the cosmological 
time, in accordance with Dirac's large-number hypothesis, and then applied 
the field equations and equations of motion to problems in cosmology, 
astronomy, and astrophysics. 

The purpose of the present work is to try to obtain a deeeper 
understanding of Weyl's geometry and its implications for physics. 

2. WEYL GEOMETRY 

In Riemannian geometry, which forms the basis of Einstein's general 
theory of relativity, one has a spacetime, the points of which are labeled by 
means of coordinates x u in a given coordinate system, and at each point 
there is a metric tensor g . .  which determines the length of a vector at that 
point. Thus, for the infinitesimal displacement vector dx"  one gets the 
interval ds according to the relation 

ds2=g.vdx"dx" (1) 

and for any other vector ~" the length ~ is given by 

( { ) ~ = g , ~ " { ~  (2) 

Under a coordinate transformation x" ~ x ' " ,  the metric tensor is 
transformed, g.~ --. g ' .~,  with 

~x ~ ~x ~ 
g ' , v  = g ~  Ox,U ~x ' "  (3) 

but the length of the vector is invariant. 
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Suppose that the vector ~" is carried by parallel displacement from a 
point P to a point Q along a given curve. By this is meant that the change in 
the component ~", d~", is given by 

d~"=-~'~laldX~luV (4) 

when the vector is carried along the curve from x" to x" + dx". Here, as 
usual, { ,~} is the Christoffel 3-index symbol, 

Uv = T  g (g"~'~ + g ~ ' " -  g"~'~) (5) 

with a comma denoting a partial derivative. From (4) it follows that, in 
general, the components ~*' at Q will differ from those at P and will depend 
on the curve along which the vector is carried between the two points. On 
the other hand, it is easy to show from (4) and (5) that 

d(¢) 2 = 0 (6) 

so that the length of the vector at Q is equal to that at P whatever the curve 
may be. It should be remarked that the condition for parallel displacement 
given by (4) can also be written in terms of the covariant components of the 
vector 

d~. = ~= ~v 

In the Weyl geometry one also has the interval ds and the length of the 
vector { given by (1) and (2), but the metric tensor g . .  is changed, not only 
under a coordinate transformation (CT) as in (3), but also under a gauge 
transformation (GT), g.~, ~ g ' . . ,  with 

g'.~ = e~g.~ (8) 

where 2 is an arbitrary (differentiable) function of the coordinates, It follows 
that ds ~ ds', with 

ds' = e ads (9) 

This possibility of a GT corresponds to the idea that one can take at each 
point an arbitrary standard of length, instead of taking a fixed standard for 
the whole spacetime as in tacitly done in Riemannian geometry. Putting it 
into more physical terms, if one has at each point a measuring rod and a 
clock (together a "four-dimensional measuring rod"), one can change the 
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scales of both of them arbitrarily, but in the same ratio, so as to keep the 
speed of light unchanged. For we see that the equation of the light cone, 
ds = 0, remains invariant under the GT (9). 

In the case of the vector ~", if we assume that under the GT the 
components ~" remain unchanged, then the length changes, ~ ~,  with 

¢ ' =  ea~ (10) 

In the Weyl geometry, corresponding to (4) one defines the parallel 
displacement of the vector ~u by the relation 

d~" = - ~  r,,~ dx (1t) 

where F"~, is a 3-index symbol, or affine connection, which is in general 
different from that in (5). A distinguishing feature of this geometry is that, in 
general, (6) no longer holds. The length of the vector ~ changes in accor- 
dance with the relation 

d ~ = ~ u d x "  (12) 

where ~. is a given vector which, together with g.~, characterizes the 
geometry. R should be noted that, if O. is the gradient of a function, then it 
follows from (12) that the change in the length ~ in going from one point to 
another is independent of the path followed. 

After the GT one hs a corresponding relation 

d~'  = ~ '~ ' d x .  (13)  r / a ,  

If one makes use of (10) and (12), one finds 

G '  = G  + 2 .  (14) 

as the GT for cu" This is the familiar transformation that one has in the 
Maxwell theory for the electromagnetic potential vector, and it led Weyl to 
identify ~. with this vector, so that one has a connection between elec- 
tromagnetism and geometry. 

In order for (12) to be a consequence of (2) and (11) for arbitrary ~" 
and dx ~, one finds that 

(15) 

If we assume that 

/ -~  = F  a~" (16) 
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we get 

rL= lG 
Carrying out the GT (8) gives 

/2V [dV ou~ .~ g 

Rosen 

(17) 

so that 

Making use of (14) we can define the co-covariant derivative 

~.~, = q / .  -- n~vO. (20) 

qj, = .a (21) , .  e qJ.u 

This can be extended to co-tensors of any order. Let us define a covariant 
derivative with the help of F ~ ,  to be denoted by a bar (t). For example, 

A. i  ~ = A . , ~  - -A~F~o = A . ; .  -- g . ~ A . O  ~ + A . O .  +A~,O. (22) 

where A.;~ is the 
Christoffel symbol 
derivative 

In the case of g~,~ one gets 

g..l  = 2g..O , g . ~ . ~ = 0  (24) 

Riemannian covariant derivative formed with the 
(5). If 1- l (A . )=n ,  we can take as the co-covariant 

(23) 

(19) 

If one takes into account the GT (14) for ¢ . ,  one sees that F~v is invariant 
under the GT. 

In the Weyl geometry one is interested in quantities which are invariant 
or covariant with respect to the GT (8). These will be indicated by the 
prefixes in- or co-, as proposed by Eddington. (7) A quantity is covariant 
under a GT if it is multiplied by e "x (n 4: 0). In that case it is said to have 
the power n. (3) Following Canuto et al., ~° we will denote the power by H, so 
that, according to (8), H[g.,~] = 2, I I [g  ~'] = - 2 .  

If we have a co-scalar ~u w i t h / / =  n, so that under a GT q /~  q/' = e"a~u, 
then 

(18) 
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We have seen that a vector undergoing parallel displacement in general 
has a length at a given point depending on the path by which the vector 
reached this point. From the physical standpoint this seems to imply that the 
mass of a particle or the energy levels of an atom depend on their past 
history, and this is hard to reconcile with the fact that particle masses and 
atomic energy levels appear to have definite values in nature. This question 
will be considered in the next section. 

3. PARALLEL DISPLACEMENT AND STANDARD VECTORS 

Let us go back to the consideration of the parallel displacement of a 
vector. Suppose that at a given point we have ~" and ~,, these being related 
through the metric tensor, as usual. One can define parallel displacement 
either in terms of ~" or in terms of ~,, corresponding to (4) or (7) in the 
Riemannian case. However, whereas (4) and (7) are equivalent, in the Weyl 
case the two definitions lead to different results. 

Let us consider ~", and let us therefore define parallel displacement by 
the condition (1 I). If we denote the change of the vector in this case by d 1 ~", 
we have 

d, ¢" = - ¢ = F ~  dx  ~ (25) 

The corresponding change in the covariant vector is then 

d I ~ .  = d , ( g , , . ¢ " )  = g ,  od,  ~'~ + ~°gu .... dx~ (26) 

Making use of (25), (17), and (5), one gets 

d, ~. = ~=F~. dx  v + 2{.(b v dx  v (27) 

From (25) and (27) it follows that 

dl(~) 2 = d,(~. {*') = 2({)2G dx  ~ (28) 

in agreement with (12). 
Now let us carry out a parallel displacement of the vector in terms of its 

covariant components ~u" Denoting the change in this case by d 2 ¢.,  we take 
as the condition for parallel displacement, in analogy with (7), 

c12 ~ . = { , ,F '~  dx  ~ (29) 

From this one readily finds 

d z (  u = - - ~ F ~  dx  ~ - 2~"0~ dx  ~ (30) 
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and in consequence one gets 

d2(¢) 2 = --2(¢)20. dx" (31) 

We see that the two different kinds of parallel displacements give 
opposite signs to the change in the length of the vector. This suggests 
defining a third kind of parallel displacement by requiring the change to be 
d¢*' given by 

that is, 

Similarly, let us take 

so that 

de" = 1(G¢" + d2¢") 

de" = - ¢ " r L  ax" - ¢ %  dx" 

= ½(d 1 de,, ¢. + 4G)  

d G = ¢ . r  L dx" + ¢. #. dx" 

We can now define a new affine connection 

- -  r r  c r  

G° - F.. + G G 

and can write 

(32) 

(33) 

(34) 

(35) 

(36) 

gu.ll,. = 0, g""ll.  = 0 (41) 

It should be noted that Gull. is co-covariant i f / / [¢ . ]  = 1. Similarly one 
finds that ¢"Jt. is co-covariant if Hie  "] =--1.  Let us call a vector with such 

One then finds 

de u = -¢'~ ~ .  dx" (37) 

a¢. = ¢o;'L ax" (38) 

These two relations follow from each other, and they give 

d(¢) 2 = 0 (39) 

One can define a covariant derivative with the help of /~,~, to be 
denoted by tl, as, for example, 

¢.1 Iv = ¢ . , .  - -  ¢,~,iP~. ( 4 0 )  
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powers a standard vector. It should be noted that, if ~" is a standard vector, 
then its length ~ is gauge invariant. More generally, one can define a 
standard tensor as one which has a power equal to the number of covariant 
indices minus the number of contravariant ones. 

In the case of a standard vector ~.,  one has 

~.tl, = ¢..~ (42) 

where the right side is in accordance with the definition given by (23). A 
corresponding equality holds for any standard tensor. 

We see that, if elementary particles and atoms can be characterized by 
standard vectors and if their equations of motion are such that these vectors 
are carried from point to point by parallel displacements defined by (37) or 
(38), then the lengths of these vectors will remain constant. The intrinsic 
properties of these particles will remain unchanged, and their vectors will 
provide single-valued gauges at each point, corresponding to the atomic 
gauge of Dirac. °) 

The above can obviously be generalized to the case in which the 
standard vector is displaced in such a way that in (37) or (38) there is an 
additional (infinitesimal) terms on the right that is orthogonal to the vector. 
In this case, too, the length will remain constant. For example, let us 
associate with the particle a standard vector V u the motion of which is given 
by 

D V " / D s  =- VUll=u ~ = P" (43) 

where u,~(=dx"/ds) is the particle velocity and 

P u V .  = 0 (44) 

Then the length V will be constant in the course of the motion. A very 
simple example of a standard vector is the velocity uC A more interesting 
one is q~u ~', where q) is a gauge-invariant quantity characterizing the particle 
(its charge, for example). 

Let us now consider the question: how does one determine the gauge at 
a given point? Let us discuss this with the help of an idealized procedure. 
Suppose we have a point P with coordinate x ~' and a metric tensor g.~, 
together with its tangent space spanned by the coordinate differentials dxC 

Let us imagine that in this tangent space the infinitesimal quantities dx ~' are 
magnified by multiplication with a large (constant) scale factor K to give 
finite quantities, and these are marked off on a rigid framework to give a 
finite local rectilinear coordinate system. Now we bring a measuring rod (in 
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the four-dimensional sense), and we lay it off from P in some direction, so 
that it is represented by the vector S". Then we can write 

S" = K dx" (45) 

the dx  ~ being given by the coordinate marks at the tip of the vector. Since 
we regard the measuring rod as having unit length, we have 

g . ~ S u S  ~ = K Z g . .  dx  u d x  ~ = 1 (46) 

We can give the vector S" various directions and in this way determine the 
metric g.v, in principle. 

To change the gauge we now bring a different measuring rod 
represented by the vector 

S TM = e - a S "  (47) 

When this is laid off from P, one gets 

S ' "  = K d ' x "  (48) 

where d ' x "  is determined by the coordinate marks at the tip of the new 
vector, so that 

d ' x "  = e -x dx" (49) 

If we now regard the new rod as having unit length, we get (for arbitrary 
directions) 

, , .  ,~ 2 , , . d , x  ~ g . ~ S  S = K g.~ d x = 1  (50) 

where g~,~ is the new metric tensor. Substituting (49) into (50) and 
comparing with (46), we get (8), 

gJuv = e2J~g.L, 

corresponding to our GT. According to (47), the vector S ~' has the power 
--1, and it is therefore a standard vector. If it is carried by parallel 
displacement according to (37) to various points, it provides a gauge at each 
point, 

Of course we can have other vectors, behaving differently. Suppose, for 
example, we have at P a vector ~", the components of which are determined 
by the coordinate marks at its tip. When one changes the gauge, as described 
above, these components do not change. Hence H[~ ~'] = 0  and therefore 
/ / [¢ . ]  = 2. 
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On the other hand, we can have a given scalar function gt in the 
neighborhood of P independent of the gauge, and we can define a vector {~ 
as the gradient of ~, 

(5t) 

Then n{{,,] = 0, H[~*' I = - 2. 

4. C U R V A T U R E  

In the previous section we dealt with two affine connections, F ~  and 
/~ , .  The first is invariant under a GT, but covariant derivatives formed with 
it are in general not co-covariant and require corrections to become so, as in 
(23). In the case of standard vectors (and, more generally, standard tensors) 
one gets co-covariant derivatives if one forms them with / ~ ,  as in (40). It 
should be noted that 

F.~ - F~. = 6.  O~ - ,, 4. (52) 

so that this affine connection describes a geometry with torsion. However, 
/~,~ is not gauge-invariant, as is brought out by (52). For describing the 
geometry of spacetime it is convenient to have a gauge-invariant formalism; 
hence we will make use o f / ~ .  Since the latter is symmetric, it describes a 
torsion-free geometry. 

Going back to (22), if one calculates the second covariant derivatives of 
A, ,  one finds that 

A.l.~ - Aur~. = AaDa. .~  (53) 

with 

Dauv~ = --Fau~,,~ + Fa.,~,~ -- F~Fa~o + F ~ . F ~  (54) 

the curvature in-tensor. Using (17), one can write 

D'~.~  = R a . ~  + A a . ~  (55) 

where Rauva is the Riemann curvature tensor, given by an expression like 
that of (54), but with Christoffei symbols, and 

Aau.o c~aF~ + a = g.,~(O ;~ + ¢a0~) -- gu~,(0a;,. + ~a0o) 

+ 6~a(O.;o + 0.¢~ -- g.~O~0.) 
.t a¢ - d~(0. ; ,  + 0 .0~  - gu~O 0~) (56) 
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On contracting, one gets 

D.~ ~ Dau~a = R.~ + F~. - 2~.;~ - g.~O~;~ -- 2~i.~b~ + 2 g . v ~ " ~  (57) 

where 

so that 

F . .  = ~.,~ - 0. , .  (58) 

D.~ - D . .  = 4F~. (59) 

A further contraction gives 

D =- g"~D.~  = R --  6~" ;,. + 6fb'~fb,~ (60) 

One also gets 

Da~,~ = 4F, o (61 ) 

from which follows the useful relation 

g°T(g"* l . .  --  g"*l v . ) =  8F.~  

The symmetry properties of the curvature tensor are perhaps best seen if 
it is written in the covariant form, 

Dm,~o = Ro.~,  , + go.F~, .  + g . , .Bo~ + govB.~. - g .~Boo  

- go,,B.~ + ( g o o g . , -  go~g.")O'~O'~ (62) 

with 

B.v = 0 .~  + 0.0v (63) 

One has, for example, 

D o. . , .  + D.ov, .  = 2go.F, ,  o (64) 

from which (61) follows. 
The curvature tensor characterizes the geometry of spacetime. Its 

contractions are important in connection with the field equations which 
determine the geometry and the physical phenomena taking place in it. 
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5. FIELD EQUATIONS AND EQUATIONS OF MOTION 

Following Weyl ~z) and Dirac, (3) let us derive the field equations from a 
variational principle 

cSI = 0 (65) 

with the in-invariant action 

I = f W(--g)  1/2 d4x (66) 

Since / - / [ ( _ g ) 1 / 2 ]  = 4, we must have H[W]  = - 4 .  Let us then write, guided 
by Dirac's work but with some small modifications, 

W =  F ,  vF "~ -- flZD + kfl,ufl,u - + 2Aft 4 + L m (67) 

where an underlined index is to be raised with g"~. 
If we interpret the vector 4,  as the electromagnetic potential, then F,v is 

the electromagnetic field tensor, and the first term on the right is the 
Maxwell scalar. On the other hand, one can regard it from the geometrical 
point of view as a scalar related to the curvature tensor, in view of (59) and 
(61). It has H =  -4 .  

The next term on the right contains the curvature scalar D given by 
(60). Now H[D] = - 2 ,  and Weyl therefore worked with D 2 in order to get 
/ / =  - 4 .  However, such a term leads to complicated field equations. In order 
to simplify matters, Weyl chose a gauge so as to make the Riemann 
curvature scalar R constant. This is not entirely satisfactory. Dirac therefore 
preferred to have a term which was more closely related to the term - R  that 
one has in the action of the Einstein general relativity theory. For this 
purpose he introduced a "Lagrangian multiplier" f12, where fl is a scalar 
function wi th /7  = - 1 ,  so that H[flZD] = - 4 ,  as required. 

Once having introduced the scalar fl, Dirac added the next two terms 
involving it. The first is a scalar w i t h / / = - 4  formed from the co-covariant 
derivative, corresponding to (20) with n = - t ,  

f t . .  = fl,~, + fl~ . (68) 

the coefficient k being an arbitrary constant. The second involves f14 (for 
w h i c h / / = - - 4 )  multiplied by an arbitrary constant which we write 2A. This 
term is regarded by Dirac as only of cosmological significance. 

The term L m has been added to describe the matter, which is the source 
of the fields. 
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Making use of (60) and (68), one can write (67) with a = k - 6, 

W =  F . . F  "~ - f l 2 R  + (a + 6)fl,ufl, e + a~20.0" 

+ 2aflO"fl,. + 2Aft  4 --~Ltr t -~- 6(flz0");. (69) 

where the last term can be discarded, since it gives a surface integral in (66). 
If we now carry out the variation of (66) in the usual way, varying g . . ,  

¢ . ,  and p (for details see Dirac ~3)) and writing 

61= f (V"" bg . .  + Q" 6O. + S6 f l ) ( -g )  a/2 d4x (70) 

we find 

V .~ = f iZG..  + 8~rM "~ + 8nT  "~ + 2fl(P;._e - g""fl;~_~) 

+ gU~fl,,~fl.~_ -- 4fl,._fl,e + Af l 'g  "~' + e(3 g"9~.,~fl.~ - fl.._fl~) (71) 

Q. = -4F~'~;~ + 2aflfl,u - + 16n J"  (72) 

S =--2 f i r  - 2(a + 6)fl;,~e + 2aflO,~O '~ - 2aflO'~;,~ + 8Afi 3 + gt (73) 

Here G "~ is the Einstein tensor and M "~ is the Maxwell tensor, the 
energy-momentum density tensor of the electromagnetic field, 

M "~ = (1/4n)(¼ g""F~.~F '~ -- F",~F ~'~) (74) 

The matter is described by the energy-momentum density tensor T "~, the 
current-density vector J",  and the scalar u/. These are defined in terms of L m, 

87rr~v = (__g)--1/2 6[(_g),/2Zml/6g.~ (75) 

167rJ" = 6 L m / 6 ~ )  a (76) 

: 6Lm/6 fl (77) 

It will be noted that T "~ has been defined in such a manner that it 
appears in (71) with the same coefficient as that of Mu% This seems 
reasonable since both tensors describe physical quantities of the same kind, 
e.g., energy and momentum density. 

To get the field equations corresponding to the condition (65), we set 
V "", Q", and S equal to zero. The equations can be written 



Weyl's Geometry and Physics 227 

G " v -  8 f l ; - ( T U V + M " V ) + % ( g " V f l , , ~ , z - / q : . ~ _ )  

1 
_ _-- _ ~ , u o  a h A O 2 ~ . v  + ~ - 2  (4/q, . /q , .  ~ p,,~,o,,z_ ) - ,,., ,g 

o I 1 .~fl \ 

l l v  F ,. = ½aC820u +/q/q,.) + 47M" (79) 

R = --(a + 6)fl;,~//q + o0, ~ O '~ -- a~t'~;. + 4A/q 2 + ~J/2/q (80) 

From (78), since G~ = - R ,  one gets 

8~ 6 o 
R = --~-- T --  - f f  fl ; ,~ ,~_ + - ~  q~ , ,~ /q, ,z + Z /q #~ /q , ,~ + /q 2 O '~ (k ,. ) + 4 A /q 2 (81) 

Combining this with (80) gives 

8xT  + a(fl=O" +/q/q,u),. - -  ½/qg" = 0 (82) 

From (79) one gets 

If o = O, this gives 

a(~=O. +/q/q.._);. + 8~.;. = 0 (83) 

Since 

/4P G ; v - 0  (88) 

J"~. = 0 (84) 

If a 4= O, one can assume that (84) holds, although one is not forced to. In 
that case 

CO20" + tip,_.),. = 0 (85) 

and (82) gives for any value of a 

167rT-  fl~, = 0 (86) 

Let us now take the divergence of (78). After some calculation one finds 

GUV;~ = --(8~r/flZ)(TUV;~ --  T/q,._//q + Fu'~J,~) 

+ (a//q2)(O" + K.I/q)(P20 ° +/qK.),o (87) 
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one gets, with the help of (83), 

TU~';. - -  Tfl ,u_/fl= J ,~F '~u - (0 ~' + fl,~/fl)J'~;,~ (89) 

If (84) holds, this gives 

Tu~,~ - Tfl ,~/f l  = J ,~F '~' (90) 

These are the equations of motion for the matter. 
From the form of the right side of (78) we see that we can assign to the 

nongravitational part of the field an energy-momentum density tensor 

TT" = M " "  + (a/8rc)[½gU"(fl0 ~ + fl,~)(flO. +fl,~) 

- -  ( f lO  ~' + f l , u ) ( f l O  ~" + fl,_~)] (91) 

Making use of (79) and (83), one finds 

(T~");~ - Tzfl, ._/fl = F"'~J,~ + (0 ~' + fl,~_/~)J'~:,~ (92) 

Comparing this with (89), we have 

( T  ~'" + T:~");, --  ( T  + Tp)f l ,~/f l  = 0 (93) 

as the general energy-momentum relation. 
Let us now consider the simple example of matter consisting of identical 

particles in the form of (pressureless) dust, so that 

T""  = p , .uUu ~ (94) 

where the scalar mass density Pm is given by 

Pm = mp. (95) 

with p. the particle density and m the rest mass of a particle. The conser- 
vation of the number of particles is described by 

(PnU"); .  = 0 (96) 

or  

[ p . ( - g )  l/2u" ],~ = 0 

Since this must be an in-invariant relation, it follows that 

//[p.] = -3  

(97) 

(98) 
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Let us suppose that the particles considered above each have an electric 
charge e, assumed to be gauge-invariant. Then, if we write 

J" = ep. u" = (e/m)Pm u" (99) 

it follows from (96) that charge is conserved, i.e., that (84) holds. 
Furthermore, from (98) and (99) we have H[J"]  = - 4 ,  and this agrees with 
the powers of the other terms appearing in (79). 

Let us now substitute (94) and (99) into (90). We get 

pm u .vZt -~- (])mid);v.H --  tgm~,~/f l  = ( e / m ) p m u , ~  (100)  

Multiplying by u,  gives, with uuu" = 1, 

09m U~');v --  pmglV]~ v/ f l  = 0 (101) 

Or 

Pm U~ 

Making use of (101) in (100) gives 

u" u s + (u"u ~ - gU")fl ,Jfl  = (e /m)u~F ~u ;4 (103) 

which can also be written 

--d-ss l /~ u'~u~ + (uUu'~-gU'~)fl'"fl =--~e u .F""  (104) 

as the equation of motion of a particle in the co-covariant form. 
Let us go back to (102) and write it, with the help of (95), 

p,,u ~' = 0 (105) 

Comparing this with (96), we are led to write 

m = moil (m 0 = const) (106) 

so that H[ml = - 1 ,  and H[pm] = -- 4. The present approach differs from that 
of Dirae, °) who took H[m] = O. 

825/12/3-2 
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6 .  I D E N T I T I E S  

Since the action (66) is invariant both under a GT and under a CT, 
there must exist two corresponding identities among the field equations. 

Let us consider the variation c~I resulting from an infinitesimal GT. (In 
view of the invariance o f / ,  61 should vanish identically.) If we take 121 ~ 1, 
then we can write for the GT 

~g.~ = 22gu~, ~ .  = 2, . ,  c~fl = --2fl (107) 

Putting these into (70) and integrating the second term by parts give 

fiI = f  (2V-- Q":.  - f l S )  2(--g) 1/z d4x (108) 

For this to vanish with ;t arbitrary, we have the identity 

2 V - -  Q";.  - flS =- 0 (109) 

From (71) (with G ~ = - R )  

V =  --flZR + 8zrT-- 6tiff;,.._ + afl.,~fl.~ + 4Aft 4 (110) 

while (72) gives 

Q u  = 2a(flfl.u_);" + 1 6 r d u  (111) 

These, together with (73) for S, substituted into (109), give 

16z~T- 16zrJ";, - f l~,  = 0 (112) 

Comparing (112) with (82), we get (83). This means that (80) is not an 
independent equation, but rather follows from (78) and (79) if one requires 
gauge invariance of the field sources. 

Now let us consider the infinitesimal CT given by 

x" = x ' "  + ~" (113) 

where ~" is an infinitesimal vector, As usual, we compare g . .  at a given 
point before the transformation with g ~  after it at a point having the same 
coordinates, so that one finds 

' = ~ ~'* (114) g.~(x) g.~(x)  + g.,.  ~,~ + g,.~ ,. + g.~,,~ 

This gives 

~g.~ = g~,,~.~ + g , ,~ ,~  + g.~,,.~'* (115) 
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Similarly one gets 

and 

231 

0. ,. + O . , ~  (1t6) 

(~fi = fl,,~ {'~ (117) 

Putting these variations into (70) and carrying out integrations by parts, one 
gets a result which can be written 

~l = f ( - -2p~;  - Q~ Ou + Q~F~,a, + Sfl,/2) ~*'(-g)*/Z d4x (118) 

For this to vanish with {/2 arbitrary, we have the identity 

/2 V 2V/2V;~ + O Q ;~ - Q~ F~u - Sfl, e =- 0 (119) 

If we make use of (71)-(73), this gives 

v/2  16zc(T/2";~+O J " : . - J v F  ) - - ~ , f l . e = 0  (120) 

Eliminating ~, between this equation and (112), we get (89). 
We see that the identities obtained on the basis of invariance under 

transformations do not give anything really new--they serve mainly as 
checks on the results obtained previously. 

7. FIELDS A N D  GAUGES 

Let us go back to the field equations (78)-(80). We have seen that (80) 
follows from the others, so that it is enough to work with (78) and (79). 

The equations contain the arbitrary parameter a. Dirac, °) for the sake 
of simplicity, took k = 6, or a = 0. In that case the equations have the form 

G/2~ = --(8rc/flZ)(T,,v + M/2~,) + (2/fl)(g,,~fl~,~ --fl;,,v) 

+ (1/flz)(4fl,ufl,~ -- g.~fl,,~fl,~) --Afl2g,,~, ( t21) 

F " ~  = 4~r./" (I 22) 

From (122) one gets (84), 
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so that this is a consequence of the field equations and is not an assumption. 
From (121) one then gets (90) [see (87) and (88)] 

T " ° ; .  - T~, ._/~ = J o F  ~" 

The function fl, w i t h / / = - 1 ,  is not determined by the equations and 
can be chosen arbitrarily. Since it is changed by a GT, one can regard it as 
determining the gauge, and one can call it the gauge function. It is always 
possible to carry out a GT with e a = fl, so that after the transformation one 
has 

g,, =flZg.~,, ~u=Ou +fl,./fl, /~= 1 (123) 

The field equations after this GT then have the form 

G.v --- -8~z(T.~ + M.~) - A~.~ (124) 

Fg"~;~,= 4zrJ" (125) 

where an overbar indicates the quantity in the new gauge. Equations (124) 
and (125) are the Einstein-Maxwell equations of general relativity with a 
cosmological term. The gauge with fi = 1 used here is often referred to as the 
Einstein gauge. 

Other choices of gauge function are possible, of course. In view of the 
co-covariance of the field equations, one can say that their physical contents 
are independent of the choice of gauge function, However, the functional 
dependence of the fields on the coordinates will depend on fl, and the 
physical interpretation may also depend on it. For example, as we shall see 
later, from the coefficient of T~., in (121) one can conclude that Newton's 
gravitational constant G can be written 

G = Go/fl 2 (126) 

where G o is the value of G for fl = 1. Hence, if fl varies with time, the 
gravitational "constant" will also vary. Another example to be considered is 
connected with cosmology: by a suitable choice of gauge one can eliminate 
the "big bang" that one has in cosmological models based on the Einstein 
gauge, 

Let us consider the fields in empty space, i.e., for T "v -=- 0, J"  = 0. Since 
¢i  appears in the field equations only in F.~, we see that, in addition to the 
usual GT, one can have a GT only for ~. ,  

O. ~ 0~, = 0 .  + f , .  (127) 
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where f is an arbitrary function, without any change in g,~ or fl, as Dirac °~ 
pointed out. However, from the standpoint of the Weyl theory one must 
regard (127) as limited only to the relation between F~,~ and O,. The vector 
0,  as defined by (12) can only change by a GT that also changes g,~ and ft. 

Now let us go back to the field equations (78) and (79) with cr 4: 0. This 
case has been discussed by Gregorash and Papini, (s) although from a 
standpoint different from that to be presented here. 

We have seen that (79) gives (83), and if we assume charge conser- 
vation as given by (84), we get (85). 

Let us take the gauge with fl = 1. Then (78) and (79) give 

G"~ = - 8 n ( T  "v + Mu~') + a(0"O ~ - ~ g " ~ O , . O ' ~ ) - A g  "~ (128) 

~ v  F ;~ = ½rrO" + 4za/" (129) 

Consider (129) in empty space, J"  = 0. If we write o = -2~c 2, we get 

F"~;. + x20" = 0 (130) 

which is a generalization of the Proca (s) equation for a vector meson field. 
From it follows that 

4"; .  = 0  (131) 

If we express F "~ in terms of 4,, and note that 

~iv;.o = 4v;.. - 4,, R~.  (132) 

(130) gives 

4.;,._~ + 4~R" .  + x2¢i. = 0 (133) 

If the curvature is negligible, we can write 

0" x20" • ;~_ + = 0  ( t34) 

This and (131) are the equations for the vector meson field. According to 
quantum mechanics, in conventional units (see Appendix) 

tc = rnc /h  = 2 n / 2  c (135) 

where m is the meson mass and 2 c is its Compton wavelength. 
We see that for o 4= 0 we have, in addition to gravitation, a field which, 

from the quantum mechanical standpoint, consists of particles of finite rest 
mass. If one takes the Weyl theory seriously, one must consider this field as 
playing a fundamental role in nature. What is the physical significance of 
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this field? We are now in the realm of speculation. One possibility is that we 
are dealing here with the electromagnetic field regarded as made up of 
photons of finite mass. If the mass m in (135) is very small, or it c very large, 
this meson field will be practically indistinguishable from the electromagnetic 
field, except for the fact that there exists the condition found earlier in (85), 

O O" = o 

which gives (131) for fi = 1. 
Another possibility is that we have here a meson rid& which interacts 

extremely weakly with ordinary matter. These mesons could conceivably 
accumulate at the centers of galaxies and galaxy clusters and could provided 
the "missing mass" that is needed to give a closed universe. 

For a 4 :0  the same equations of motion (90) and (104) hold as in the 
case a = O, but e is now the charge of the particle that interacts with the 
meson field--which may turn out to be the electromagnetic field, after all. 

8. THE COSMIC GAUGE 

In order to apply the field equations to cosmological models let us take 
JU - 0 and Fu~ = 0. From (79) it follows that 

a(fl~ u +fi,_~) = 0  (136) 

so that (78) can be written 

8~r ~ 2 ~ 1 ~ 2 
G~= - - f i t  Tu+-fl--(gu/~;.e--/~=uz)+fl- ~(4/~, , , /q~-guff , .~,e)-d/?  O. (137) 

Assuming that the universe is homogeneous and isotropic, we can 
write ~9) 

R 2 (t) 
ds 2 = dt 2 R2 dl 2 (138) 

with R ( t )  describing the scale of the universe (or radius), R o = R(to),  where 
t o is the present value of the cosmic time t, and 

dl z = (1 + krZ /4R~) -Z (dr  2 + r 2 dO z) (139) 

where 

dO z = dO 2 + sinSO d¢ 2 (140) 
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Here dl 2 is the three-dimensional time-independent line element, and k is now 
the spatial curvature parameter ( k = 0 ,  +1). Let us denote (t ,r,  0 ,4)  by 
(X O, X 1, X 2, X3). 

In accordance with our assumptions let us take fl---fl(t) and 

T~o = p(t),  T~ = --p(t)Oo~, To k = T~ = 0 (141) 

where p and p are the density and pressure, respectively, of the matter. We 
then get from (137), with a dot now denoting a derivative with respect to t, 

3/~ 2 3k 8rip 6/~fl . ~3J~2Af12 
R 2 R 2 - f12 + - R - ~ - - +  fl: 

(142) 

2/~" /~2 k 8zcp. 2~" 4/~fl f12 
R R 2 R 2 =--~- -+- f l -+  Rfl  flz Aft  2 (143) 

The first equation is for ~ ,  v) = (0, 0), the second for ~ ,  v) = (1, 1), (2, 2), 
(3, 3). We also have to consider (90), which reduces to a single relation, 

~ + - ~ ( p  + p )  + (3p--p)  = 0 (144) 

Furthermore, p and p are assumed to be related by an equation of state. 
If one takes the gauge function fl = 1, one gets the usual cosmological 

equations of general relativity (with the cosmological term) 

3R z 3k 
Rz R2 = - 8 r c f i -  A 

2R" k 2 k 
R R 2 R2 - 8zc /7-A 

(145) 

(146) 

3R 
/~ + ~ (/7 + 17) = 0 ( t47)  

We denote the metric in this case by ~,~. and the density and pressure by ~7 
and/7. For a given equation of state these equations determine R(t).  With 
R(to) > 0 one can account for the Hubble red shift. "°) 

Now let carry out a GT to guy with 

g . .  = (R2o/R2)guv , f l = R / R  o (148) 

In place of dg 2 as given by (138) we now have 

as 2 = (R~/R ~) at ~ _ dt ~ (149) 
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If we introduce a new time coordinate T, 

t 

T = ~ I  [Ro/R(t)] dt (150) 

we get 

ds 2 = d T  2 - dl 2 (151) 

so that we now have a static universe. 
The question now arises: how can one understand the existence of the 

Hubble effect in such a static universe, in which distances between galaxies 
are constant in time? For this purpose let us go back to (106). One can 
conclude from it that the energy levels of an atom will increase with time like 
fl, so that, on the basis of quantum theory, the frequencies of spectral lines 
will increase in the same way, i.e., 

v = vo/~ (v o = const) (152) 

Let us suppose that at time T e an atom in a distant galaxy emits light of 
frequency v e which reaches the earth at the present time T o. It will have the 
same frequency v e on arrival in view of the static form of (151). However, an 
atom of the same kind on the earth will emit at time T O a higher frequency v 0 
according to (152) and (148). We have 

ve/Vo = R(:Ve)/R(7 o) (153)  

which is just the red-shift relation ~1°) for R(To) > R(Te). 
With (151) holding, one can rewrite (142)-(144) accordingly by taking 

R = Ro, g = 0. These then become 

3k 8np 
2 - A #  2 

2/3" 1~ k 87~p = 7  -A 2 

(154  

(155) 

with a dot now denoting a derivative with respect to T. It is easily verified 
that, if one takes ~ as in (148) and one goes from T to t with the help of 
(150), the above equations give (145)-(147) provided one writes 

ff = p/fl4, ff = p/fl4 (157) 

° 

~ + ~ ( 3 p - - p ) =  0 (156) 
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It should be remarked that, while in general the gauge function fl is 
arbitrary, if we fix the metric, as in (151), fl is determined by the field 
equations. 

Although we are dealing with the same physical situation, we can 
expect that the solutions of the present equations for fl expressed in terms of 
T will look different from those of (145)-(147) for R/R o in terms of t. Let us 
consider some simple cases. 

8.1. Dust 

In the case of a model of the universe filled with matter for which p = O 
(dust), (156) gives 

P =Pofl (Po = const) (158) 

If this is substituted into (154), we get an equation that can be easily solved 
if we set A = 0 .  Taking T = 0  as the time at which f l = 0 ,  one gets as 
solutions 

k = 0: fl = (2z~p0/3) T 2 (159) 

k =  1: fl = (8ZcPoR~/3) sin2(T/2Ro) (160) 

k = --1: fl = (8zcpoR2/3) sinhZ(T/2Ro) (161) 

8.2. Radiation 

For a universe filled with isotropic radiation, for which 

P =  }P 

(156) gives 

(162) 

P =Po (163) 

and, again with A = 0, the solutions of the equations are given by 

k = 0: fl = (8Z~po/3)1/2T ( t64) 

k = 1: fl = (8~po/3)l/2Ro sin(T/Ro) (0 <~ T/Ro <~ zc) (165) 

k = - 1 :  fl = (8Z~Po/3)1/2Ro sinh(T/Ro) (166) 

We have here what might be called the cosmic gauge, in which the 
standard of length is proportional to the scale (or radius) of the universe. 
Hence the geometry of the universe is static; it is the gauge function fl that 
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changes with time. We can describe all phenomena with this gauge, but we 
may have to change some of our concepts, We see, for example, that at 
T = 0 there is no "big bang," such as one gets with the Einstein gauge, fl = 1. 
During the early, radiation-dominated period the density is constant, as in 
(163), and at T =  0 any particles present have zero rest masses according to 
(106). 

We have been discussing the function ft. What about the vector ~. ? It is 
natural to take, for the cosmological models with the Einstein gauge, 

~, = 0  (167) 

Going over to the cosmic gauge, we then have 

4 ,  = - f l , , /  fl (168) 

From (12) we find for the length L of a parallely displaced vector 

L = Lo/ f l  (L 0 = const) (169) 

Let us go back to the field equations (78). We see that the coefficient of 
T "" is 8n/fl  z. In conventional units the coefficient would be written 8 n G / c  4, 
with G the Newtonian gravitational constant and c the speed of light. It 
follows that 

G = Go/fi z 

where G O is the value of G at the present time (at which fl = 1). 
We saw earlier that the mass of a particle m also depends on fl, 

m = m o i  1 

In the Newtonian approximation the gravitational potential at a distance r 
from the particle is therefore given by 

dp = - - G m / r  = - G  o rno/flr (170) 

This suggests introducing an "effective" gravitational constant, in relation to 
the present value of the mass m 0, 

Go = Go/g (171) 

We see that G o decreases with time. Its behavior, at least qualitatively, 
corresponds to what Dirac (3) concluded on the basis of his large-number 
hypothesis. However, this hypothesis will not be adopted in the present work. 

Equations (170) and (171) may be significant in astronomical 
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problems. On the other hand, it should be noted that the potential energy of 
masses m and M a distance r apart is given by 

V = - G m M / r  = - G  O m o M o / r  (172) 

and this is independent of ft. 
In the discussion of the Hubble effect it was stated that, if the mass of a 

particle is given by (106), the same relation holds for all the energy levels of 
an atom. One can raise the question: is this statement in agreement with the 
laws determining the energy levels of an atom? In other words, can one show 
that, if (106) holds for all the particle masses, it also holds for all the atomic 
energy levels? 

Consider the Schr6dinger equation for a hydrogen atom consisting of a 
proton of mass M and an electron of mass m. The energies of the bound 
states are given by the Bohr relation 

E , = - g e 4 / 2 h Z n  ~ ( n = 1 , 2 , 3 , . . . )  (173) 

Here # is the reduced mass, i.e., 

/2 = m M / ( m  + M )  = gofl (Po = const) (174) 

on the basis of (106). We see that in this case E ,  indeed varies as fl if we 
take the electron charge e and Planck's constant 2zrh to be constant. 
Similarly, one finds that the Dirac equation for an electron in the electric 
field of a fixed proton gives energy levels that are proportional to m and 
hence to ft. 

More generally, in the nonrelativistic case, let us suppose that we have a 
small system consisting of N charged particles, so that the time-independent 
Schr6dinger equation has the form 

HY'=E ' (175) 

where 

hZ v2  ejek 
H = - Z  2mj j + j<z-" k ~ rj~ (176) 

with the usual notation. For convenience let us denote all the Cartesian coor- 
dinates of all the particles by x i (i = 1, 2 ..... 3N). If all the masses depend on 
fl as in (106), let us introduce a change of scale (regarding fl as constant 
under the conditions being considered) 

x i = xo~/fl (177) 
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It readily follows that 

H = Hofl (178) 

where H 0 is expressed in terms of Xoi and is independent of B. From (175) we 
then have 

E = E0fl (E o = const) (179) 

so that the energy levels behave like the masses. If, instead of electrostatic 
interactions, there are gravitational interactions, one gets the same result 
with the help of (172). 

If  in (175) one makes use of (106) and (178), one sees that the solution 
is now given by 

e =   eq x;) (180) 

It follows from the last expression that a typical dimension of the physical 
system, say L, will change with time according to the relation 

L =Lo/ f l  (L o = const) (181) 

It is interesting that this has the same form as (169) for the length of a 
vector undergoing parallel displacement. 

We see that, while in the Einstein gauge small physical systems--atoms,  
for example--have constant masses and sizes and the universe expands, in 
the cosmic gauge the universe has a constant size and, in the case of small 
systems, the masses increase and the sizes decrease with time. 

If we assume that (181) applies also to the dimensions of an elementary 
particle, it follows that at T = 0 when there was fl = 0, if elementary particles 
were present, they had very large sizes, presumably much larger than the 
distances between neighboring particles. The matter of the universe must 
have been in a state with very interesting properties. 

9. PARTICLE FIELD IN COSMIC G A U G E  

Having been considering the cosmic gauge, let us now investigate the 
field of a particle in this gauge. Suppose there is a particle at rest at the 
origin, and we consider a region around the particle which is so small that 
we can neglect the cosmic curvature (if there is any). Hence we take k = 0 in 
(139). Similarly let us neglect the cosmological constant A. Furthermore, let 
us assume that in this region we can neglect the other matter in the universe, 
so that we can take T,,~ ---- 0 in the field equations. 
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Let us then write 

d s  2 = e ~ d t  z _ e a d r  2 _ r 2 dl22 (182) 

with v and 2 functions of t and r, and let us take the gauge function f l ( t )  as 
given. The field equations (137) for (u, v) = (0, 0), (1, 1), and (1, 0) give 

/ 41 1 1 e_ ~ 2 + 7 )  (183) 

(_~L 1 ) i  e-V(2_~° f l °v°  f l ~  (184) 
e-~ + 7  - 7  = ~' /~1 

4° - fl°v' (185) 
r p 

Here subscripts denoted partial derivatives. The (identical) equations for 
(/t, v)= (2, 2), (3, 3) have been omitted since, if the other equations hold, 
they will be satisfied because of the Bianchi identities. 

In view of the forms of the left sides of (183) and (184), let us assume 

e ~ = f ( t )  e - ~  (186) 

From (185) one then gets 

2 o / r  = f l o 4 , / f l  (187) 

the solution of which is 

4 = 4(¢), ~ =/~r (188) 

Making use of (186) and (188) in (183) and (184), one finds that the latter 
become identical if one takes f so that 

A / f  ----- 2floolflo - -  4flo/f l  (189) 

which gives 

f = f12o/a2 fl' (a = const) (190) 

tn this case (183) and (184) take the form 

e - a  _ + - - ~  = a l e ~ ( ~  ' + 3) (191) 
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where a prime denotes a derivative with respect to ~. Let us write 

u = e  -:~ (192) 

Then (191) becomes 

~u '  + u - 1 = a 2 ( - ~ 3 u ' / u  z + 3 ~ 2 / u )  (193) 

If we now take 

U = V q- (V 2 + a2~2) 1/2 (194) 

the equation simplifies to give 

~v' + v -- ½ = 0 (195) 

which has as its solution 

v = ½ - m o / ~  (m 0 = const) (196) 

Summarizing, we have in (182) 

e ~ = (fl02/azfl 4) e -a  (197) 

where 

with 

so that 

e - a  = ½ _ mo / f l  r + A 

A = [(½ -- too / f i r )  2 + a2f12r211/2 

e a = ( 1 / a 2 f l Z r 2 ) ( A  - ~ + too / f i r )  

(198) 

(199) 

(200) 

Since we are 

with (192) and (194) holding. However, this term is not important for our 
present discussion and will be omitted. 

v = ½ - -  m o / ~  - -  ~ A ~  2 (201) 

The above solution is valid for any gauge function f l ( t ) .  

working in the cosmic gauge, we take fl as in (148). 
It might be mentioned that, if we had kept the cosmological term in the 

field equations, we would have obtained, instead of (196), 
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Having obtained the above solution, we can ask how the solution looks 
if we go from the cosmic gauge to the Einstein gauge, i.e., if 

d s  2 __,de2 =ft2 d s  2, f l - - ~ f l =  1 (202) 

One then gets 

d e  2 = (g2o/aZftz) e - a d t  2 - f t2(e;t  d r  2 + r 2 dr2 2) (203) 

This suggests the coordinate transformation t-~ T, with 

d T  = (go /a f t )  d t  = a f t / a f t  (a  > O) (204) 

so that (with a suitable choice of the origin of 7) 

f t ~  e °aT 

We then get 

dg  2 = e - a  d T  2 - -  e2ar(e a d r  2 q-  r 2 d/2 2) 

(205) 

(206) 

with e -~ and e x given by (198)-(200) and (205). 
This result is somewhat surprising since it is now independent of the 

original gauge function ft(t). It looks as if R / R  o has been replaced by e ~ .  
However, for large values of r we have e - a  ~ a r e ~ r  so that the behavior 
does not correspond to any of the usual cosmological models. Evidently, the 
behavior is due to our having neglected the influence of the matter in the 
universe. (To take into account this matter in a satisfactory way would have 
been difficult.) However, in a small enough region around the particle, say 
for a r e ' ~ r , ~  1, and for a small enough time interval, during which one can 
equate e ar  to R / R  o and a to the Hubble constant, (206) provides a good 
description of the field of a particle in an expanding universe. 

It should be remarked that (206) is an exact solution of the Einstein 
equations for space which is empty except for the particle at r = 0. If  one lets 
the arbitrary constant a go to zero in order to get a static solution, one finds 
in the limit 

e v = e - a  = 1 - -  2 m o / r ,  r > / 2 m  o (207) 

e ~ = e -a  = 0 r ~< 2m 0 ]208) 

This differs from the Schwarzschild solution for r < 2m 0. It raises the 
question as to whether the usual form of the Schwarzschild solution is valid 
for r < 2m 0. This will be discussed elsewhere. ~11) 
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10. SOME OTHER GAUGES 

Although, in principle, one can introduce an arbitrary gauge, in practice 
one chooses a gauge for its usefulness. Thus the Einstein gauge, with fl = 1, 
is convenient because one has the simplest formalism and because particle 
masses and frequencies of spectral lines are constant in time. On the other 
hand, the cosmic gauge given by (148), leading to the metric (151), may 
perhaps be useful in astronomy in that it provides a picture of a static 
universe with nearly fixed distances between galaxies. 

One can ask whether, in the case of a cosmological model described by 
(138) and (139), there are other gauges of interest besides the Einstein gauge. 
At first glance two possibilities suggest themselves. One is to take 

/3 = Ro/R  (209) 

However, if this is substituted into (142) and (143), one finds that all the 
derivatives cancel out so that one gets 

3k 8~oR 2 ARo ~ 
- = Ro ~ R2 (210) 

k 8~zpR 2 AR~ 
R 2 =  R~ R 2 (211) 

while (144) becomes 

+ (4t~/R)p = 0 (212) 

We see that R is an arbitrary function of t, while p and p satisfy the 
relations 

p R '  = A,  p R  4 = B (A, B = const) (213) 

so that (210) and (211)become 

- 3k = --8rcA / R  2o -- A R  ~ 

- k  = 8 ~ / R  ~o - A R  g 

(214) 

(2t5)  

To understand this situation we note that one can carry out a GT from 
the present g . ,  and/3 given by (138) and (209) to 

g~.~ == (Ro/R)2g . . ,  /~=- 1 (216) 



Weyrs Geometry and Physics 245 

so that after the CT (150), dg 2 is given by (151). Equations (142) and (143) 
then become 

-3 /R o = -8 a - A ( 2 1 7 )  

- k / R  ~o = 8rc13 -- A (218) 

Obviously/Y and/7 are constant, so that (144) is satisfied. We now have a 
static universe (with the Einstein gauge). For k = 1, A > 0 one gets the 
closed model of the universe proposed by EinsteinJ 11) An empty universe 
(p-=/7 = 0) is given by k = 0, A = 0. The case k = - 1  is impossible (for p 
and p nonnegative). 

One can now take the inverse transformations to those carried out 
above, and one returns to (138) and (209). However, one can do this with 
arbitrary fl, or arbitrary R. Hence it is understandable why the field 
equations do not have the form of differential equations in the present case. 
Comparing (217), (218) with (214), (215), we have 

/YR~ =A,  /~R~ = B  (219) 

It should be remarked that in an expanding universe, according to (152) 
and (209), the frequencies of spectral lines decrease with time. It is obvious 
that in this model there is no Hubble effect: the red-shift due to the 
expansion of the universe just matches that of the spectral lines of the 
laboratory atoms and is therefore unobservable. One must conclude that, 
with (138) holding, taking/7 as in (209) gives disagreement with observation. 

A second possibility is to take, together with the metric (I 38), the gauge 
function 

= R / R  o (220) 

In this case the field equations (142)-(144) give 

12/~ z 3k 8rCR Zop A R  z 
- -  (221) 

R 2 R 2 R 2 R2o 

4 R  4R  2 k 87rR~p A R  ~ 
R R z R 2 - R z R~ (222) 

/~ + ~ (2p + 6p) = 0 (223) 

One now describes the Hubble effect as a combination of two equal effects, 
one due to the expansion of the universe, the other due to the change in the 
spectral frequencies of local atoms. 

825/~2/s-3 
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One can also carry out a GT to get the Einstein gauge ff = 1. One then 
finds, after a time transformation, 

clg 2 = d t  2 _ ( R / R o )  4 d t  ~ (224) 

so that R / R  o here must be defined so as to correspond t o  (R/Ro) 1/2 in the 
conventional relativistic models, as in (138). We see that we could have 
started with (138) and the Einstein gauge in the first place. 

There seems to be little gained by taking the above gauge with (220), 
particularly in view of the complicated description of the Hubble effect. 
From the standpoint of usefulness (and simplicity) the only two gauges that 
appear worth considering are the Einstein gauge (fl= 1) and the 
cosmological gauge of Section 8. 

However, there may be other considerations. Thus, Canuto et al., ~6) for 
a metric essentially equivalent to (138), took as gauge functions 

fl = to~t, fl = t/to (225) 

the first on the assumption of spontaneous mass creation, the second without 
this assumption. These were chosen in order to have the gravitational 
"constant" G vary like 1/t, in accordance with Dirac's large-number 
hypothesis. They are not very different from the gauge functions (209) and 
(220) considered above. 

It should be emphasized that, in the general case of a cosmological 
model characterized by a scale parameter (or radius) R( t )  and a gauge 
function fl(t), the description of the Hubble effect must take into account 
both the expansion of the universe and the change in the frequency of a 
spectral line as given by (152). Corresponding to (153) one should write 

Ve/Vo = fl(te) R(te) /~(to)  R(to)  (226) 

In the case of galaxies not far away one gets by the usual procedure (1°) for 
the Hubble constant H 

H = (t~/R + l~/fl) (227) 

where a dot denotes a time derivative. 

11. D I S C U S S I O N  

There are two points that should be brought out. The first one is that 
the Weyl theory, in providing a geometrical interpretation of elec- 
tromagnetism, deserves serious consideration. Dirac °) made an important 
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contribution to the theory by introducing the co-scalar fl into the variational 
principle and thus into the field equations. His proposal to use two sets of 
units, or gauges, in order to overcome the difficulty of the nonintegrable 
length in the Weyl theory has some merit. However, it raises the question: 
how can the atomic gauge be transferred uniquely to every point in a 
spacetime with a Weyt geometry if an electromagnetic field is present? The 
suggestion made in Section 3 of working with standard vectors and 
modifying the law of parallel displacement may provide the answer. 

The second point that needs to be emphasized is that the Weyl theory 
leads to co-covariant equations, so that their physical content is the same for 
all gauges, the choice of gauge being arbitrary. Dirac made use of the Weyl 
theory because, by a suitable choice of gauge, he could get the gravitational 
"constant" G to vary like 1/t (t is the age of the universe), in accordance 
with his large-number hypothesis. Canuto et al., (6) working with this gauge, 
carried out elaborate astronomical and astrophysical calculations. However, 
there is nothing in the Weyl theory that singles out this gauge; nor do the 
present procedures and units of measurement show any connections with it. 
If future measurements confirm that G varies like 1/t, as predicted by 
Dirac's large-number hypothesis, some more fundamental explanation will be 
required. The Weyl theory will then have to be supplemented, modified, or 
replaced. 

A P P E N D I X  

In the general relativity theory the relation between the component goo 
of the metric tensor (a geometrical quantity) and the Newtonian 
gravitational potential (a physical quantity) is determined in the case of a 
weak field by comparing the equations of motion of a test particle according 
to general relativity and according to classical mechanics. In the Weyl 
theory there does not appear to be any similar way to get the numerical 
relation between the geometrical vector 4, and the corresponding elec- 
tromagnetic potential vector in conventional units, which will be denoted 
by ¢~. 

Let us suppose that we are working with quasi-Galilean coordinates 
having the dimensions of length (with x 0 = ct) and a dimensionless metric 
tensor. From (12) we see that 4, has the dimension (length) -~. On the other 
hand, from electromagnetic theory we know that ~, has the dimensions 
charge. (length) -~. Hence we can write 

~ = q~t,, (A1) 
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where q is a constant having the dimensions of charge (it could be the charge 
of the electron). If  we denote the electromagnetic field tensor in conventional 
units b y / ~ , ,  then 

f f  ~ = qFu~ (A2) 

Let us go back to the Lagrangian density (67). From the Einstein- 
Maxwell electromagnetic theory the first term should be, in conventional 
units, 

with 

(G/c4 ) f f  uvf f  u" = L 2FU" F ~ (A3) 

L 2 = Gq2/c 4 (A4) 

so that L has the dimension of  length. 
If  one keeps L 2 as the coefficient of  the first term of (67), then (129) 

with J"  = 0 has the form 

L Z , • , •  _ !,~au (A5) ; v -  2 ~ Y  " 

Taking now a / L  2 -- -2re  2, one gets (130), (133), and (134). 
With (67) as it is, we have L = 1, so that, by (A4), q = c2/G 1/2. In 

general relativity units (e = 1, G = 1) we have q = 1. 
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