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We now aim at a �nal synthesis. To be able to characterize the physical state of the
world at a certain point by means of numbers we must not only refer the neighborhood
of this point to a coordinate system but we must also �x on certain units of measure.
This idea, when applied to geometry and the conception of distance after the step from
Euclidean to Riemannian geometry had been taken, a¤ected the �nal entrance into the
realm of in�nitesimal geometry. Removing every vestige of ideas of �action at a
distance,� let us assume that the world geometry is of this kind; we then �nd that the
metrical structure of the world, besides being dependent on the quadratic form
ds2 = g��dx

�dx� , is also dependent on the linear di¤erential form ��dx
�.

Thus does Weyl begin the last portion of his signature book, Space-Time-Matter, the �rst
edition of which appeared in 1918. Weyl�s initial intention was to demonstrate that metrical
space, in addition to having the metric tensor g�� , involves a fundamental vector �� that vanishes
only in the absence of an electromagnetic �eld. Indeed, Weyl went so far as to identify his vector
�eld with the electromagnetic four-potential itself, an assertion that was initially lauded by
Einstein and other notable physicists of the day.

But problems quickly arose. Weyl�s 1918 theory, which he also called �purely in�nitesimal
geometry,�required that the lengths or magnitudes of all vectors be rescaled or recalibrated
under physical transplantation in spacetime (Weyl believed that the Riemannian notion of
invariant vector length was itself a needless carryover of the �action at a distance�concept).
However, Einstein noted that a rescaling of the metric tensor g�� would automatically result in a
rescaled line element via

ds2 �! dŝ2 = � g��dx
�dx�

where �(x) is a scale factor that may vary from point to point in spacetime. Since the line
element ds can be made proportional to the proper time of a ticking clock, physical phenomena
(such as the spacing of atomic spectral lines) would depend upon their prehistories (or paths), in
obvious disagreement with observation. Nevertheless, Weyl had hit upon a powerful and intuitive
notion that ultimately found application in quantum physics, where it became known as gauge
invariance. In 1929, in response to several papers by London and others, Weyl noticed that a
rescaling of the wave function  ! exp(i�) , taken as a symmetry of the quantum mechanical
�eld, led to conservation of electric charge via Noether�s theorem. Weyl subsequently abandoned
the idea that electrodynamics, like gravitation, was a purely geometric phenomenon, and
wholeheartedly embraced gauge invariance as a quantum construct. Today, we recognize that the
term �gauge invariance�(which was coined by Weyl as Eichinvarianz ), should more appropriately
be called �phase invariance.�

A Little Background
In Weyl�s 1918 theory, the change in the length L of an arbitrary vector under

transplantation is given by
dL = �� dx

�L
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Integration then gives Z
dL

L
=

Z
�� dx

� or

L = L0 exp

�Z
�� dx

�

�
where L0 is the original length of the vector. The exponential term is called the Weyl scale factor,
and it alone determines how vector length varies. If we equate Weyl�s gauge vector �� with the
electromagnetic four-potential A�, then it is easy to see from Stoke�s theorem that the scale factor
can vanish only if �� is a gradient:Z

�� dx
� =

ZZ
curl � � n̂ dS

=

ZZ
F�� dx

�^dx�

where F�� = @��� � @��� is the electromagnetic �eld tensor. Thus, vector length in Weyl�s theory
is invariant only when an electromagnetic �eld is absent.

The Weyl scale factor appears coincidentally in the Lagrangian for a free charged particle

S = �
Z h

mcds+
e

c
�� dx

�
i

= �
Z �

mc+
e

c
��

dx�

ds

�
ds

which, under a variation of the coordinates, �x� , leads immediately to the covariant form of the
Lorentz force equation

d2x�

ds2
+

�
�
��

�
dx�

ds

dx�

ds
= �e

c
F ��

dx�

ds

where the quantity in braces is the Christo¤el symbol of the second kind:�
�
��

�
=
1

2
g�� [@�g�� + @�g�� � @�g�� ]

This motivates us to consider the Weyl scale factor in alternative de�nitions of the metric
tensor, the line element and the coe¢ cients of a¢ ne connection by way of a similar approach.
Recall that Einstein�s primary objection to Weyl�s 1918 theory was that the line element ds was
not gauge invariant. We may attempt to de�ne a new metric and line element via

ĝ�� = exp

�
�a
Z
��dx

�

�
g�� ; (1)

dŝ = exp

�
�1
2
a

Z
��dx

�

�
ds (2)

where a is some convenient constant. It remains to be seen how these quantities vary under a
gauge transformation of the Weyl vector ��

��� = �k @��

2



where �� 0 is a small number, k is another constant, and �(x) is the gauge parameter, but it
seems plausible that we can select the constant a so that

�ĝ�� = 0

� dŝ = 0

and thus totally negate Einstein�s objection.

Recall that in his 1918 theory Weyl derived a symmetric a¢ ne connection term ���� that
included the vector ��, which Weyl equated with the electromagnetic four-potential:

���� = �
�
�
��

�
+
1

2

h
��� �� + �

�
� �� � g��g����

i
(3)

This connection necessarily results in a non-zero �non-metricity tensor�D�g�� (where D is the
covariant derivative operator) which, using the above connection, is given by

D�g�� = g���� (4)

By contraction of this identity with the metric tensor, we get

�� =
1

n
g��D�g��

which vanishes when space is Riemannian.

We now consider an in�nitesimal gauge transformation of the metric using

g0�� = e��(x)g�� = (1 + ��)g�� and

g�� 0 = e���(x)g�� = (1� ��)g��

so that �g�� = ��g�� and �g�� = ���g�� . Using these de�nition, it is easily shown that the gauge
vector must transform according to

��� = � @�� (5)

a property that is identical to that of the four-potential in electrodynamics.

Now, in Riemannian geometry the connection and the equations of the geodesics for free
space can be derived simply by a coordinate variation of the Lorentz action

S = �mc
Z
ds

= �mc
Z
g��

dx�

ds
dx�

which gives us

�S = mc

Z
g��

�
d2x�

ds2
+

�
�
��

�
dx�

ds

dx�

ds

�
ds �x�

Since the variation in the action vanishes, we recover the familiar geodesic equations for a free,
vanishingly-small test particle

d2x�

ds2
+

�
�
��

�
dx�

ds

dx�

ds
= 0

which, in �at space, represents a straight line.
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A New Method for Deriving the Weyl Connection
We next consider the possibility of deriving the Weyl connection (3) by multiplying ds by a

suitable Weyl scale factor and applying same variational principle as above. Let us assume that it
has the same form as given previously:

dŝ = exp

�
�1
2
a

Z
�� dx

�

�
ds

The variational problem is now given by

S = �mc
Z
dŝ

= �mc
Z
exp

�
�1
2
a

Z
�� dx

�

�
g��

dx�

ds
dx�

It is straightforward to show that the variation now results in

�S = mc

Z
g��

�
d2x�

ds2
+

�
�
��

�
dx�

ds

dx�

ds
+
1

4
a g���� �

1

2
a��

dx�

ds

dx�

ds

�
ds �x�

If we set a = 2, we recover the Weyl connection.

This is an interesting result in itself, because it demonstrates how the Weyl scale factor
might be used to generate connections. But we return to the question at hand, which is: are the
scaled quantities

ĝ�� = exp

�
�2
Z
�� dx

�

�
g�� ; (6)

dŝ = exp

�
�
Z
�� dx

�

�
ds (7)

invariant with respect to a gauge transformation of the Weyl vector as in (5)? If they are, then we
can posit the existence of a Weylian geometry in which all scaled metric quantities (ĝ�� , dŝ,

p
�ĝ,

the connection terms, etc.) are automatically gauge invariant. More importantly, the associated
Riemann-Christo¤el tensor R̂����, the Ricci tensor R̂�� and the Ricci scalar R̂ are then all gauge
invariant, making possible the use of an Einstein-Hilbert gravitational action that remains linear
in the Ricci term:

SG =

Z p
�ĝ R̂ d4x

In the 1918 theory, Weyl had to set the Lagrangian equal to
p�g R2 in order to ensure gauge

invariance. This Lagrangian results in �eld equations that are of the fourth order in the metric
tensor, a problem that Einstein was also quick to point out.

In spite of the logic of our little plan, however, it doesn�t quite work. If we take the gauge
variation of ĝ�� in (6), we quickly �nd that

�ĝ�� = ���ĝ��

and not zero. Thus, if we are to preserve the possibility of having a fully gauge-invariant Weylian
geometry, we have to give up the idea of deriving a connection that is consistent with this
geometry (at least from a variational principle). But this simply leads to a contradiction in terms,
because Weyl�s geometry is really all about the connection. Furthermore, since the scaled
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Christo¤el symbols themselves are gauge invariant, we actually have no need for the Weyl
connection in (3) at all.

Last Thoughts
The writer has argued previously that Weyl�s original connection term is wrong anyway,

because it demands that the length of all vectors be changed in the presence of the Weyl vector
��. As Einstein and others noted, there are some vectors whose magnitudes are simply numbers �
the Compton wavelength of an electron, the unit vector dx�=ds and the related four-momentum
p� of special relativity to name three examples. The lengths of these vectors cannot change under
physical transplantation, so some modi�cation of Weyl�s geometry is required to allow for them.
It is easily shown that the total derivative of the unit vector equation

1 = g��
dx�

ds

dx�

ds

is simply

0 = D�g��
dx�

ds

dx�

ds

dx�

ds

so that, whatever the non-metricity tensor D�(g��) is, it is either identically zero or satis�es the
peculiar cyclic symmetry condition

D�g�� +D�g�� +D�g�� = 0;

an expression that seems to have �rst been proposed by Schrödinger in 1950. Weyl�s de�nition of
the non-metricity tensor in (2) does not satisfy this condition, and this shortcoming might have
something to do with our inability to develop a fully consistent, gauge-invariant Weylian
geometry that eliminates the objections Einstein raised against the theory.

There is one avenue yet open to us, and that is the fact that, in quantum mechanics, the
Weyl vector �� is a purely imaginary quantity. London showed that the change in vector length
could be related to the orbital radii of an electron in the Bohr atom if one setsI

dL

L
= 2�i

This is Cauchy�s integral formula if one assumes L.to be a complex quantity. This forces the
identi�cation of Weyl�s vector �� with the electromagnetic four-potential A� via

�� = �
ie

�hc
A� ;

a term that appears frequently in quantum mechanics. As yet, nothing in the original Weyl
theory involves complex quantities, and it is just possible that such an approach may provide an
additional degree of freedom that will ultimately make the theory consistent. At the same time,
however, it would introduce further complications involving the reality of vector length variation.

These are the questions that Weyl�s original gauge theory continues to pose: Does geometric
gauge invariance (or conformal invariance) have any relevance in physics? And if so, what is (to
quote Eddington) the Natural Gauge of the World?
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