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The Spin Zone

To demonstrate the Dirac notation, we will investigate some important physics involving a particle
having a spin of 1/2 – the electron. The subject of electron spin is in fact much more important than any
notational device, but the Dirac notation makes it particularly easy to understand. It is assumed that you
already have some familiarity with the concept of particle spin, so I’m not going to discuss the basis of spin
in any detail.

To begin, let’s consider an investigation of great historical importance – the Stern-Gerlach experiment.
In 1922, the German physicists Otto Stern and Walther Gerlach observed that a stream of silver atoms
directed into an inhomogeneous magnetic field was split into two roughly equal streams. This observation
was attributed to some unknown property of the single valence electron that is present in the 5s shell of
an un-ionized silver atom. It was eventually realized that electrons have a quantum property that became
known as electron spin. A kind of intrinsic angular momentum, electron spin came in just two types – up
and down – and was numerically equal to ±1/2 ~, where ~ is Planck’s constant divided by 2π. The non-
uniform magnetic field in the Stern-Gerlach apparatus was observed to be separating +1/2 ~-spin electrons
from their negative counterparts. It was also discovered that beam splitting occurred no matter how the
magnet was oriented. As a result, three degrees of freedom were attributed to electron spin: Sx, Sy, and Sz,
each numerically equal to ±1/2 ~. Consequently, we will have the operations Ŝany |Sany±〉 = ±1/2 ~ |Sany±〉,
where “any” stands for x, y, or z. As yet, we do not know what the operators Ŝany or their corresponding
eigenfunctions look like, but we’re about to find out.

This is the February 8, 1922 postcard sent by Walther Gerlach to Niels Bohr announcing the
discovery of space quantization, which in 1927 was finally understood as a consequence of electron
spin. The photos on the back of the card show the effect of the magnetic field before and after
being turned on. The discovery was hastened by Otto Stern’s penchant for cheap cigars! See
Physics Today, December 2003.

Let us now investigate the Stern-Gerlach experiment a little further. Take a stream of electrons that
have been generated in such as way that their spins are randomly oriented, and direct this into a z-directed
Stern-Gerlach magnet. We get two streams of electrons: one has all electrons in the |Sz+〉 state, while the
other stream’s electrons are all in the |Sz−〉 state. Let us now direct the Sz+ stream into another Stern-
Gerlach apparatus, also oriented in the z-direction. What do we observe? Since the incoming electrons are
all initially in the |Sz+〉 state, the Stern-Gerlach set-up doesn’t have any effect: we get just one stream
coming out, and all of its electrons are still in the |Sz+〉 state. No mystery here. But now let’s direct this
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new stream into an apparatus oriented in the y-direction. What we now observe is a splitting of the Sz+
electrons into two separate streams having the states |Sy+〉 and |Sy−〉. This is a little odd, considering that
the incoming electrons had no y-spin character at all, but still no big deal. However, if we now direct either
of these Sy-state electron streams into yet another z-directed Stern-Gerlach apparatus, we get two streams
again in the Sz+ and Sz− states. It is as if the electrons had forgotten that the original Sz+ property had
been removed prior to entering the y-oriented apparatus. How do we understand and quantify this strange
behavior of electron spin?

Those of you who played with Polaroid filters as kids may see a parallel here between sequential Stern-
Gerlach experiments and polarized light. If you did, then you know that if two Polaroid filters are arranged
at 90 degrees to one another, no light can get through; however, by placing a third filter between them at
some intermediate angle, some light does in fact pass through all three. The presence of the intermediate
filter somehow “erases” the memory of the initial photons with regard to the first filter.

Although the analogy between electron spins and Polaroid filters is interesting, spin has no true counter-
part in the world of classical physics, so we must rely solely on quantum mechanics to explain it. What we’re
going to do is define each spin state in terms of the z spin states, which for simplicity (and convention) are
just called |Sz+〉 and |Sz−〉. I know this makes the z-direction a bit special, but we have to start somewhere
(we could have done the same for either the x-states or the y-states). Let’s begin with the Sx+ eigenstate,
which we assume can be written as a linear combination of the up and down z states:

|Sx+〉 =
a1√
2
|Sz+〉+

a2√
2
|Sz–〉

where a1 and a2 are complex coefficients to be determined. The
√
2 terms are there to ensure that

〈Sx+|Sx+〉 = 1, as it must be. As we implied earlier, you should try to read this as saying that 〈Sx+|Sx+〉
is the probability amplitude that a |Sx+〉 state will be found later in a |Sx+〉 state. Since we’re not doing
anything to the |Sx+〉 state, it can’t change, and the probability for this “transition” must be 100%. Al-
right, let’s now assume that we’ve skimmed off a stream of Sx+ electrons from a Stern-Gerlach apparatus.
If we direct the stream into another apparatus set up in the z-direction, we know that we’ll get two streams
representing the |Sz+〉 and |Sz−〉 states. The probability amplitude for a stream of |Sx+〉 electrons to be
converted into |Sz+〉 electrons by the apparatus is

〈Sz+|Sx+〉 =
1√
2

This result reflects the fact that the Sx+ electrons will be converted equally into Sz+ and Sz− electrons, so
the transition probability is 50%. So we have

〈Sz+|Sx+〉 =
1√
2
=

a1√
2
〈Sz+|Sz+〉+

a2√
2
〈Sz+|Sz–〉

Eigenvector othogonality kills the second term on the right, so we have a1 = 1. A similar argument using
〈Sz − |Sx+〉 gives a2 = 1, so

|Sx+〉 =
1√
2
|Sz+〉+

1√
2
|Sz–〉

To find |Sx−〉, we set

|Sx–〉 =
b1√
2
|Sz+〉+

b2√
2
|Sz–〉

where b1 and b2 are again complex numbers. Using 〈Sz+|Sx−〉 = 1/
√
2 again, we see that b1 = 1. To get

b2, we note that 〈Sx+|Sx−〉 = 0 (that is, a stream of Sx− electrons cannot be converted by a z-oriented
Stern-Gerlach apparatus into Sx+ electrons). By using

〈Sx+| =
1√
2
〈Sx+| +

1√
2
〈Sx–|

2



we easily find that b2 = −1. We can therefore write the Sx eigenvectors as

|Sx±〉 =
1√
2
|Sz+〉 ±

1√
2
|Sz–〉

Moving on to the y-case, we now direct a stream of Sy+ electrons into the z-oriented apparatus. We let

|Sy+〉 =
c1√
2
|Sz+〉+

c2√
2
|Sz–〉

Again, multiplying 〈Sz+| against this shows that c1 = 1. Now, if we now follow the same approach as we
did for |Sx+〉, we find that c2 = 1, which makes |Sy+〉 equal to |Sx+〉, which is no good. Instead, let’s look
at the combination 〈Sy+|Sy+〉, which gives us c∗2 c2 = 1. If c2 6= 1, the only other choice we have is c2 = ±i.
Let’s pick c2 = i, so that

|Sy+〉 =
1√
2
|Sz+〉+

i√
2
|Sz–〉

A completely analogous argument for |Sy−〉 shows we can write the Sy states as

|Sy±〉 =
1√
2
|Sz+〉 ±

i√
2
|Sz–〉

As mentioned, we could have defined the spin eigenvectors in terms of Sx or Sy, but it is conventional to use
the Sz eigenstates. The reason for this has to do with the fact that the Sz spin operator (will we will now
derive) has a very simple form in spherical coordinates.

If you don’t know already, state vectors and eigenvectors can also be represented as column matrices,
while operators can be represented by square Hermitian matrices (also differential operators). This affords
us the luxury of working either in ket and bra notation or with the (perhaps) more familiar matrix forms. As
an example of this, we’ll now convert the above results for spin-1/2 systems into the matrix representation.

Since we picked the Sz eigenvectors as the basis for the Sx and Sy kets, we’ll pick the simplest column
vectors possible for |Sz±〉:

|Sz+〉 =
[
1
0

]
, |Sz–〉 =

[
0
1

]
There’s only two components, reflecting the fact that spin-1/2 systems have only two possible spin states:
up and down, corresponding to ±~/2. Similarly, we have the bras

〈Sz+| =
[
1 0

]
, 〈Sz–| =

[
0 1

]
You can check for yourself that the inner products of these vectors are either zero or one, depending on
whether they’re orthogonal (for example, 〈Sz–|Sz+〉 = 0). We can also determine the outer products, and
they are

|Sz+〉〈Sz+| =

[
1 0
0 0

]
,

|Sz–〉〈Sz–| =

[
0 0
0 1

]
,

|Sz±〉〈Sz ∓ | =

[
0 0
0 0

]
It is now a simple matter to compute the operator Ŝz that operates on the Sz eigenvectors. Recalling that
the closure relation for the eigenvectors of some observable A is

∑
k |ak〉〈ak| = 1, we can derive the useful

relation

Â =
∑
k

Â |ak〉〈ak|

=
∑
k

ak |ak〉〈ak|
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where the ak are the eigenvalues of the operator Â. The eigenvalues associated with Ŝz are ±~/2, so this
gives us

Ŝz =
1

2
~ |Sz+〉〈Sz+| −

1

2
~ |Sz–〉〈Sz–|

Using the matrix forms for the outer products, we can also write this as

Ŝz =
1

2
~
[
1 0
0 −1

]
You should now be able to verify for yourself that the operators for Ŝx and Ŝy are

Ŝx =
1

2
~ |Sz+〉〈Sz–| −

1

2
~ |Sz–〉〈Sz+| =

1

2
~
[
0 1
1 0

]
Ŝy =

1

2
i~ |Sz–〉〈Sz+| −

1

2
i~ |Sz+〉〈Sz–| =

1

2
~
[
0 −i
i 0

]

One last note before we wrap this up. Consider the following somewhat peculiar combinations of the
Ŝx and Ŝy operators, which are defined as

Ŝ+ = Ŝx + iŜy =
1

2
~
[
0 1
0 0

]
Ŝ− = Ŝx − iŜy =

1

2
~
[
0 0
1 0

]
If we multiply any spin-down ket |−〉 by Ŝ+, the operator turns it into a spin-up ket:

Ŝ+ |−〉 =
1

2
~
[
0 1
0 0

] [
0
1

]
=

1

2
~
[
1
0

]
,

while the operator Ŝ− turns a spin-up ket into its spin-down counterpart. In addition, the quantities Ŝ+ |+〉
and Ŝ− |−〉 are both zero, in keeping with the observation that electron spins higher than ~/2 and lower
than −~/2 don’t exist. The operators Ŝ+ and Ŝ− are respectively called the raising and lowering opera-
tors (sometimes called “ladder” operators), and they are of tremendous utility in the quantum mechanical
description of all kinds of angular momentum (not just spin), while another version of these operators plays
an equally important role in the raising and lowering of energy states (as in the harmonic oscillator). The
raising and lowering operators in effect create states that have higher or lower levels of angular momentum
or energy. In quantum field theory, similar operators are used to create and annihilate particles and fields.
The discovery of ladder operators is credited to Dirac – no big surprise, perhaps!

More Spin

The three 2×2 matrices Sx, Sy and Sz are known as the Pauli spin matrices. The great Austrian
physicist Wolfgang Pauli first used them to “force fit” electron spin into the Schrödinger equation for the
hydrogen atom. Then in 1928, an even greater physicist (our friend Mr. Dirac) found a set of four 4×4
matrices, closely related to the ones above, that he used in his celebrated relativistic electron equation.
The Dirac equation has electron spin already built into the formalism, so it doesn’t have to be jammed in
artificially. Because the Dirac matrices are 4×4, they allow for a description of not only electrons (with spin
up and spin down), but also for spin-up and spin-down positrons, which were the first forms of antimatter
to be discovered.

Dirac’s discovery of the relativistic electron equation ranks as one of the most profound achievements
of the human mind. Though Dirac’s religious inclinations were somewhat ambiguous (I believe he was a
member of the Anglican Church, though he was also considered to be an agnostic), in my opinion there’s
little doubt that God spoke to Dirac’s mind one day back in 1928, and we’re the better for it.
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