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Abstract

The non-Riemannian geometry of the German mathematical physicist Hermann Weyl, developed in 1918 shortly af-
ter Einstein’s announcement of the general theory of relativity, represented the first comprehensive effort to embed
electromagnetism into the geometrical formalism of general relativity. An initial admirer of Weyl’s geometry, Ein-
stein discovered a seemingly irreconcilable flaw in the theory that showed it to be unphysical. However, the sheer
beauty of the theory and its fundamental notions of gauge and conformal invariance were such that researchers
to this day have continued to apply the theory to physics, including cosmology and quantum mechanics. Here we
outline how Weyl might have surmounted Einstein’s primary objection to the theory by a simple reinterpretation of
the non-metricity tensor using an approach suggested (perhaps accidentally) some thirty years later by Schrödinger,
whose geometry was similar to but fundamentally different than Weyl’s. We also demonstrate that either approach,
which both involve the non-metricity tensor, introduces fundamental and intractable problems into general rela-
tivity that appear to render hopeless a purely classical route to the unification of gravity and electromagnetism.

The use of general connections means asking for trouble.
Abraham Pais, Subtle is the Lord: The Science and the Life of Albert Einstein

Introduction

In 1918 Hermann Weyl proposed a unification of gravitation and electromagnetism based on the surmised
invariance of physics with respect to a conformal (or scale) transformation of the metric tensor gµν→ eπ(x)gµν,
where π(x) is an arbitrary scalar function. A decade later Weyl’s idea was recast as gauge symmetry, which
subsequently became a cornerstone of quantum theory. More recently, the notion of conformal symmetry has
been explored in numerous cosmological models, and there is increasing speculation that a conformally invariant
Riemannian geometry may indeed underlie all of physics.

Weyl’s theory, which introduced a non-Riemannian geometry in an effort to embed electromagnetism into general
relativity as a purely geometrical construct, necessarily relied upon a Lagrangian that was invariant with respect to
the local rescaling of the metric tensor gµν→ eπ(x)gµν. Weyl believed that the scale parameter π(x) might be
related to the gauge transformation property of electromagnetism (Aµ→ Aµ + ∂µπ) , and thus provide an
opportunity for deriving Maxwell’s equations from a geometrical foundation. The theory failed, but it has since
spurred a considerable amount of interest in gravitational theories based on conformal invariance. That interest
has continued to this day, with many researchers contributing to the topic, now properly called Weyl conformal
gravity.

Meanwhile, a similar non-Riemannian geometry was suggested by Erwin Schrödinger in the late 1940s that in
some ways paralleled Weyl’s effort. While Schrödinger did not pursue this geometry to the extent that Weyl did,
his approach nevertheless represents an arguably superior formalism, as it appeared to surmount the objections
Einstein expressed regarding Weyl’s earlier work. Although Schrödinger spent much of his time investigating
geometries that were non-symmetric in the metric tensor and the connection term, his geometry is simpler and
arguably more elegant than Weyl’s.

* Electronic address: wostraub@gmail.com

1



1. Notation

Following Adler et al., ordinary partial and covariant differentiation of scalars, vectors and tensors will be denoted
with a single subscripted bar and double subscripted bar, respectively, as in

Aαµν||λ = Aαµν|λ + AβµνΓ
α
βλ − AαβνΓ

β

λµ
− AαµβΓ

β

λν

with the signs of the various terms following basic convention; unless noted otherwise, the connection Γ αµν is
symmetric with respect to its lower indices.

2. Overview of Weyl’s 1918 Theory

We begin with Weyl’s theory of 1918, not only because it was the first comprehensive effort to derive
electromagnetism from general relativity but because it contains a key element that will be of use when we turn to
Schrödinger’s ideas. The literature on Weyl’s 1918 theory, now over one hundred years old, is so extensive that
we will provide only the basics of his approach, along with a cursory review of the notion of parallel transport.

Parallel Transport, the Connection, Vector Magnitude

One of Weyl’s major contributions to early differential geometry was his development of the formalism of parallel
transport, which allows two vectors at neighboring points to be compared in a covariant manner. This formalism
introduced the notion of the connection Γ αµν, which is of critical importance in differential geometry. If a vector ξα

is parallel-transported from the point x to the point x + d x , it can be linked covariantly with its new value
ξα(x + d x) = ξα(x) + ξα|µ at the new point with the quantity Dξα, where

Dξα = −Γ αµν ξ
µd xν (2.1)

The differential operator D links the vector ξα(x + d x) with its parallel ‘‘twin’’ ξα(x) at that point, a concept that is
more fully explained in any elementary text on differential geometry. The connection term Γ αµν is not a tensor since
it transforms in a non-invariant manner under a change of coordinates, but it is otherwise completely arbitrary.

It is important to note that the parallel displacement operator D applies only to vectors. For scalars and tensors it
is just the ordinary total derivative, so one has DS(x) = dS = S|αd xα and D gµν(x) = d gµν|α = gµν|αd xα, etc.

The length or magnitude L2 of some vector Aµ is given by L2 = gµν AµAν, and in Riemannian geometry it is
assumed to be invariant with respect to parallel transport. Using (2.1), a straightforward calculation shows that
this is equivalent to

d L2 = 2Ld L = gµν||α AµAνd xα (2.2)

where gµν||α is the covariant derivative of the metric tensor. Also known as the non-metricity tensor, it necessarily
vanishes in a Riemannian space. In that case, the connection reduces to the familiar form

Γ αµν→
§

α
µν

ª

=
1
2

gαβ
�

gµβ |ν + gβν|µ − gµν|β
�

(2.3)

which is conventionally referred to as the Christoffel or Levi-Civita connection.

In a general non-Riemannian space the tensor gµν||α does not vanish, nor is the connection necessarily required to
be symmetric. The consequences of non-symmetric connections (particularly the concept known as torsion) have
been explored by many researchers (including Einstein, Eddington and Schrödinger) and continue to this day.

Weyl’s Geometry

For a flat space in Riemannian geometry the metric tensor can be reduced to a constant, so the connection
vanishes and vectors parallel-transport to the new location x + d x unchanged. When the space is not flat, a vector
ξα can only change in direction, while the square of its magnitude L2 = gµνξ

µξν remains fixed. Weyl’s idea was
to remove this latter constraint by allowing vector magnitude to change as well. While perhaps counterintuitive,
this is arguably the simplest path to a classical non-Riemannian geometry.
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In order to proceed, Weyl had to assume a form for the change in vector magnitude under parallel transport,
which he believed should be structurally similar to that of the vector itself. So he simply wrote

d L = φα L d xα (2.4)

where the as-yet undefined vector field φα acts somewhat like a connection term. At the same time Weyl noted
that the change in vector magnitude L2 could be determined by direct calculation which, for the arbitrary vector
ξµ, is given by

2Ld L = gµν||αξ
µξνd xα (2.5)

Comparison of (2.4) and (2.5) shows that Weyl’s definition for the change in vector magnitude is then equivalent
to

gµν||α = 2gµνφα (2.6)

By expansion of gµν||α and using cyclic permutations of the above expression, it is a simple matter to show that the
connection term in Weyl’s geometry is

Γ αµν =
§

α
µν

ª

−δαµφν −δ
α
νφµ + gµνgαβφβ (2.7)

At this point Weyl made an interesting observation. Let the metric tensor gµν, which determines vector magnitude,
undergo an infinitesimal rescaling (or regauging) given by gµν→ eεπ(x)gµν, or δgµν = επgµν where ε is a
vanishingly small quantity (similarly, δgµν = −επgµν). Weyl noticed that if the vector φµ also undergoes the
transformation δφµ =

1
2επ|µ, then the connection Γ αµν remains unchanged. Although Weyl believed that Nature

should be invariant with regard to a rescaling of the metric (also known as conformal invariance), more
importantly he recognized that the transformation of φµ was the same as that of the electromagnetic
four-potential of electrodynamics. For this reason, Weyl believed he had discovered a way to unify the forces of
gravitation and electromagnetism using a purely geometrical approach.

In addition to the metric tensor, rescaling of the metric determinant quantity defined as
Æ

−|gµν| =
p
−g deserves

mention at this point. It is a simple matter to show that for any variation, this quantity changes in accordance with

δ
p

−g = −
1
2

p

−g gµνδgµν

so that, with the conformal variation δgµν = −επgµν, we have

δ
p

−g =
1
2
εnπ

p

−g (2.8)

where n is the dimension of space; in four dimensions this is simply δ
p
−g = 2

p
−gεπ. It is significant that the

Lagrangian
p
−g FµνFµν of classical electromagnetism, where Fµν is the antisymmetric electromagnetic tensor,

exhibits conformal invariance only in a four-dimensional space.

Thus, in Weyl’s geometry the connection exhibits scale or conformal invariance, a type of symmetry that Weyl
believed should be a basic principle not only in general relativity but in all of Nature. Although the
Einstein-Hilbert Lagrangian

p
−g R, from which one derives the traditional free-space Einstein gravitational field

equations, is not conformally invariant, Weyl noted that the quantity
p
−g R2 is fully invariant, and he

subsequently used this Lagrangian to derive a set of equations that appeared to provide not only an alternative
version of Einstein’s gravitational field equations but Maxwell’s equations as well.

To summarize, Weyl’s geometry is characterized by the following:

1. There is a non-vanishing non-metricity tensor that is proportional to a new field quantity that Weyl
associated with the electromagnetic four-potential, or gµν||α = 2gµνφα

2. The geometry utilizes a symmetric, non-Riemannian connection consisting of the Christoffel term and the

Weyl vector field, or Γ αµν =
§

α
µν

ª

−δαµφν −δ
α
νφµ + gµνgαβφβ
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3. Under an infinitesimal conformal variation of the metric tensor gµν→ (1+ επ)gµν (or
δgµν = επgµν,δgµν = −επgµν), the Weyl connection remains unchanged provided the Weyl vector field
varies according to δφα =

1
2επ|α

4. The magnitude of any vector changes under parallel transport according to d L = φαLd xα. In Weyl’s
geometry a vector is obliged to vary under parallel transport; there are no truly fixed-length vectors

5. The Weyl action
∫p
−g R2d4 x is conformally invariant. While of fourth order, this action leads to equations

of motion that are identical to those of the Einstein free-space field equations

Einstein’s Objection

Although Weyl’s theory was able to reproduce the classical predictions of Einstein’s simpler 1915 theory
(perihelion advance of the planet Mercury, gravitational redshift, etc.), Einstein — an initial admirer of Weyl’s
work — objected to the theory on more fundamental grounds. Under a rescaling of the metric tensor, the
invariant line element ds2 = gµνd xµd xν also undergoes rescaling via ds→ exp 1

2πds. Einstein argued that ds can
be associated with the ticking of a clock or the spacings of atomic spectral lines, and he concluded that if it is not
absolutely invariant, many basic physical quantities (Compton wavelength, electron mass, etc.) would vary
arbitrarily with time and location. Weyl tried to refute Einstein’s argument, and even undertook numerous efforts
to make ds a true conformal invariant, but to no avail. Within a few years after its proposal, Weyl’s theory was
considered a dead end.

Overcoming Einstein’s Objection

Consider the line element ds2 = gµνd xµd xν again, which we now write as

1= gµν
d xµ

ds
d xν

ds
(2.9)

which merely expresses the fact that the magnitude or length of the unit vector d xµ/ds is, well, unity. Since this
magnitude is a pure number, it cannot change under parallel transport. But as noted previously, in Weyl’s theory
the magnitude of any vector will change according to

d L = φα L d xα (2.10)

Indeed, in Weyl’s geometry there can be are no truly ‘‘constant’’ vectors provided that φµ 6= 0, in which case one
reverts back to the Riemannian case. However, we will see that there is a way to preserve the notion of constant
vectors while allowing other vector quantities to change under physical transplantation. For the unit vector d xµ

(or any vector proportional to it, such as the wave four-vector, elecromagnetic current four-vector, inverse
Compton wavelength, etc.) we can demand that d L = 0 if

gµν||α d xµd xνd xα = 0 (2.11)

This presents two possibilities: either the non-metricity tensor gµν||α vanishes identically (and one again has
Riemannian geometry), or it satisfies the cyclic property

gµν||α + gαµ||ν + gνα||µ = 0 (2.12)

Note that Weyl’s definition of the non-metricity tensor in (2.6) does not satisfy this condition, so if we are to
maintain the notion of a non-zero gµν||α then we must revise the geometry. In particular, it remains to be seen
what the non-metricity tensor really represents, what forms it can take, and whether — as in Weyl’s theory — it
involves some vector quantity that we might attribute to more familiar physics.

3. Overview of Schrödinger’s Connection

We now turn to Schrödinger’s work of 1944-1950, a late period in the great Austrian physicist’s life when he too
considered non-Riemannian connections as a route to unification. He seems to have been primarily interested in
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purely affine theories (connections without a metric), and his investigations included ideas that would seem odd
to a modern relativist today. For example, he replaced the metric determinant

Æ

|gµν| with its Ricci equivalent
Æ

|Rµν|, although similar ideas were proposed by Einstein (and even earlier by Eddington). Schrödinger also
considered metrics and connections that were both symmetric and non-symmetric, again mirroring ideas that had
been considered years earlier by others.

Much of this work was summarized in a series of papers Schrödinger wrote in 1947-48, but in 1950 he published
his famous book Space-Time Structure, which included more conventional approaches to generalizations of
Einstein’s foundational 1915 theory. In that book he happened upon what he considered to be the most general
possible symmetric connection, although he was initially motivated by a non-symmetric formalism. What he found
was a rank-three tensor Tµνα that satisfies the symmetry properties of both gµν and gµν||α. Although Schrödinger
did not explicitly identify his T -tensor with the non-metricity tensor at the time, that identification is unavoidable,
as we now show.

Schrödinger started with a symmetric metric tensor and a non-symmetric connection, but with a vanishing
non-metricity tensor gµν||α. First, Schrödinger wrote the three permutations

gµν||α = gµν|α − gµλΓ
λ
αν − gλνΓ

λ
αµ

gαµ||ν = gαµ|ν − gαλΓ
λ
νµ − gλµΓ

λ
να

gνα||µ = gνα|µ − gνλΓ
λ
µα − gλαΓ

λ
µν

Subtracting the first expression from the sum of the other two, and setting all the permuted gµν||α terms to zero,
we have

1
2

�

Γ αµν + Γ
α
νµ

�

=
§

α
µν

ª

+
1
2

gαβ gµλ
�

Γ λνα − Γ
λ
αν

�

+
1
2

gαβ gνλ
�

Γ λµα − Γ
λ
αµ

�

Using the notation

Γ λ(µν) =
1
2

�

Γ λµν + Γ
λ
νµ

�

, Γ λ[µν] =
1
2

�

Γ λµν − Γ
λ
νµ

�

Schrödinger was able to write the above expression as

Γ αµν =
§

α
µν

ª

+ gαβ gµλΓ
λ
[αν] + gαβ gνλΓ

λ
[βµ] + Γ

α
[µν] (3.1)

Recognizing that the antisymmetric or skew aspect of the last term causes it to vanish when the geodesic
equations are considered, Schrödinger just scrapped it (as he put it), and simply wrote

Γ αµν =
§

α
µν

ª

+ gαβ
�

gµλΓ
λ
[αν] + gνλΓ

λ
[βµ]

�

(3.2)

Note that this expression now represents a family of purely symmetric connections for the indices µ,ν, which he
now wrote as

Γ αµν =
§

α
µν

ª

+ gαβTµνβ (3.3)

where the quantity Tµνβ = Tνµβ consists of a combination of two antisymmetric connections whose sum is
nevertheless a legitimate tensor quantity. This connection was, in Schrödinger’s opinion, the most general
symmetric connection possible. It is distinctly different from Weyl’s’ connection, and thus represents a new
geometry in its own right. Parallel transport of an arbitrary vector ξα in Schrödinger’s geometry is now
expressible using the new differential quantity

Dξα = −Γ αµνξ
µd xν = −

�§

α
µν

ª

+ gαβTµνβ

�

ξµd xν (3.4)

Schrödinger went even further. Unlike Weyl, he recognized that the unit vector d xµ/ds must not change under
parallel transport. Repeating the calculations above with the revised differential operator in (3.4) we have, after
some simple algebra,

d L2 = −2Tµνα d xµd xνd xα = 0
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from which Schrödinger surmised the cyclic condition

Tµνα + Tαµν + Tναµ = 0 (3.5)

Unfortunately, the connection in (3.3) presents two problems. For one, Schrödinger’s elimination of the
antisymmetric term Γ α[µν] by fiat would set all such skew terms equal to zero, making the tensor Tµνα (which is
itself composed of such terms) vanish as well. And two, if we continue to assume that gµν||α = 0 for this
connection, then Tµνα vanishes identically, as a quick calculation shows. To remedy this, let us expand the identity

gµν||α = gµν|α − gµλΓ
λ
να − gλνΓ

λ
µα

where the connection, as Schrödinger assumed, is fully symmetric. The Christoffel term drops out, and we are left
with gµν||α = Tµνα. Consequently, Schrödinger’s T -tensor is the non-metricity tensor. We can now write
Schrödinger’s connection as

Γ αµν =
§

α
µν

ª

+ gαβ gµν||β (3.6)

A much simpler and rigorous proof of this identity can be shown using the cyclic condition in (2.12). We have

gµν||α = gµν|α − gµλ Γ
λ
να − gλν Γ

λ
µα

Adding the two cyclic forms of this, we get

0= gµν|α + gαµ|ν + gνα|µ − 2gµλ Γ
λ
να − 2gλν Γ

λ
µα − 2gαλ Γ

λ
µν (3.7)

From the Christoffel connection we have
§

λ
µν

ª

=
1
2

gλα
�

gαµ|ν + gνα|µ − gµν|α
�

By isolating the terms gαµ|ν + gνα|µ, inserting them in (3.3) and doing a simple contraction, we have the result

Γ λµν =
§

λ
µν

ª

+ gαλ
�

gµν|α − gµλ Γ
λ
να − gλν Γ

λ
µα

�

But this is just

Γ λµν =
§

λ
µν

ª

+ gαλgµν||α

which is (3.6). QED.

4. Identification of the Non-Metricity Tensor

In his his 1918 theory, Weyl was motivated to introduce a vector field φα that he subsequently identified as the
electromagnetic four-potential. In his view, the presence of an electromagnetic field causes the ordinary Christoffel
connection of Riemannian geometry to acquire terms proportional to φα, resulting in a non-zero non-metricity
tensor. No such field is apparent in Schrödinger’s connection, but it contains a link to Weyl’s theory that allows a
plausible definition of the connection in terms of such a field. To see this, let us contract (2.12) with gµν:

gµνgµν||α + 2gµνgµα||ν = 0

or
1
2

gµνgµν||α = −gµνgµα||ν

Both sides of this expression are obviously one-form vectors, and for definiteness we define

φα =
1
2

gµνgµν||α (4.1)
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(Note that we would have arrived at essentially the same identification by contracting Weyl’s non-metricity
tensor.) Expanding, we have

φα =
1
2

gµν
�

gµν|α − gµλΓ
λ
να − gλνΓ

λ
µα

�

which reduces to
Γ µαµ = (ln

p

−g)|α −φα

We thus have a definition for the contracted variant of Schrödinger’s connection in terms of the covariant vector
φα. But since this vector was defined in terms of the connection itself, we would seem to have a circular definition
yielding an empty formalism. To avoid this we assume, as Weyl did, that there exists an external vector field
proportional to φα whose presence causes the geometry to go from Riemannian to non-Riemannian. This is an
admittedly artificial argument, but it is necessary if we are to proceed.

We now seek a definition of the non-metricity tensor in terms of the metric tensor and this new vector field.
Following Weyl, the most plausible approach is to assume an expression of the form

gµν||α = Agµνφα + Bgαµφν + C gναφµ

where A, B, C are constants. From the symmetry of gµν we must have B = C , while from (2.12) we see that
A= −2B. By considering our definition of φα in (4.1) we have A= 2/3, so we can finally write

gµν||α =
2
3

gµνφα −
1
3

gαµφν −
1
3

gναφµ

as the most general definition of the non-metricity tensor. From (3.6), we can similarly write Schrödinger’s
connection as

Γ αµν =
§

α
µν

ª

−
1
3
δαµφν −

1
3
δανφµ +

2
3

gµνgαβφβ

which is very similar to Weyl’s connection.

5. Conformal Invariance

Although Weyl’s 1918 theory failed, it was largely vindicated in 1929 when Weyl’s idea of gauge invariance was
applied to quantum physics. Weyl himself recognized that it was not the rescaling of the metric tensor that
mattered in physics, but a rescaling of the wave function with a complex exponential phase factor that was
physically meaningful. The invariance of quantum physics with respect to such a phase factor resulted in a new
conservation theorem, that of the conservation of electric charge. Gauge or phase invariance today represents a
profoundly fundamental and important symmetry in quantum mechanics, while the importance of conformal
invariance in general relativity is still largely unknown.

In view of this, we now consider how things change when the metric tensor undergoes the infinitesimal local
change of scale defined by gµν→ (1+ επ)gµν (or δgµν = επgµν) (where ε is a small number) in Schrödinger’s
geometry.

Weyl was able to choose the variation of his vector one-form φα to be such that the connection Γ αµν was itself
invariant to a conformal variation, but a quick glance at the Schrödinger’s connection shows this to be impossible.
This is because the variation of the Christoffel term, which gives

δ

§

α
µν

ª

=
1
2
εδαµπ|ν +

1
2
εδανπ|µ −

1
2
εgµνgαβπ|β ,

is offset in Weyl’s connection only if we choose δφµ =
1
2επ, whereas Schrödinger’s connection is incompatible

with such a choice. We can, however, still straightforwardly determine how the connection varies under a change
of scale. To see this, let us conduct a conformal variation of the Schrödinger connection as given in (3.6):

δΓ λµν = δ
§

λ
µν

ª

+ gµν||αδgαλ + gαλδgµν||α
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Using δgαλ = −επgαλ, expanding gµν||α and collecting terms, we can write this as

δΓ λµν + gµαgλβδΓ λβν + gµαgλβδΓ λβν =
1
2
εgµνgλβπ|β +

1
2
εδλµπ|ν +

1
2
εδλνπµ

Comparing terms, this strongly implies that

δΓ λµν =
1
2
ε gµν gλβ π|β

with the variation of the contracted form being

δΓ λµλ =
1
2
επ|µ

It is now an easy matter to show that

δφµ =
3
2
επ|µ

This demonstrates that a scale variation of φµ, like Weyl’s vector, is a pure gradient, and any suspected
relationship with the electromagnetic four-potential would seem to be preserved in the Schrödinger case.
However, unlike Weyl’s connection, the connection in (3.6) is not invariant with respect to rescaling. This will
prove to be the formalism’s undoing, as we will see in the next section.

6. Related Topics

As was mentioned earlier, Weyl’s conformally-invariant action Lagrangian is the simple quantity
p
−g R2, which

results from the fact that the Weyl connection is itself conformally invariant. This allowed Weyl to
straightforwardly derive equations of motion by considering arbitrary independent variations of the metric tensor
δgµν and the vector δφµ, which led Weyl to expressions similar to Einstein’s gravitational field equations and
those of Maxwell’s electrodynamics. Such a straightforward approach cannot be made for Schrödinger’s geometry,
if for no reason other than the fact that the connection Γ λµν is not scale invariant.

In 1921 Weyl used a linear combination of the quantities
p
−g RµναβRµναβ ,

p
−g RµνR

µν and
p
−g R2 in ordinary

Riemannian geometry to show that there does indeed exist a unique action Lagrangian that is fully scale invariant.
That quantity is

I =
p

−g Cµναβ Cµναβ

where Cµναβ is the familiar Weyl conformal tensor. In four dimensions, this can be shown to reduce to

p

−g CµναβCµναβ =
p

−g
�

Rµναβ Rµναβ + 2 Rµν Rµν −
1
3

R2
�

(6.1)

is fully scale invariant. In view of this, we might consider the possibility of using a similar approach to develop a
scale-invariant action Lagrangian involving the Schrödinger connection, which would then yield equations of
motion specific to Schrödinger’s formalism. At first glance this would appear to be a tedious task, given the many
components that enter the calculation. But we will now show that such a calculation is unnecessary, since this
approach is not only difficult, but in fact impossible.

Symmetry Properties of the Riemann-Christoffel Tensor in Schrödinger Geometry

We note that in Riemannian, Weyl and Schrödinger geometry, the familiar symmetry and Bianchi identities

Rαµνλ + Rααµν + Rαναµ = 0,

Rαµνλ + Rαλµν + Rανλµ = 0

and
Rαµνβ ||λ + Rαµλν||β + Rαµβλ||ν = 0 (6.2)
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are all valid, regardless of the connection chosen. However, for the Weyl and Schrödinger geometries the
fully-covariant form

Rαµνλ||β + Rαµβν||λ + Rαµλβ ||ν 6= 0,

since the non-metricity tensor is no longer zero. This is the source of the difficulty in attempting to derive
equations of motion using the Schrödinger connection, because it invalidates several traditional symmetry
properties of the Riemann-Christoffel tensor Rα

µνλ
, as we will now see.

The Riemann-Christoffel tensor is most commonly derived by computing the difference between the double
covariant derivatives of a vector ξµ, as given by

ξµ||α||β − ξµ||β ||α = −ξλRλµαβ = −ξ
λRλµαβ

where
Rλµαβ = Γ

λ
µα|β − Γ

λ
µβ |α + Γ

λ
βνΓ

ν
µα − Γ

λ
ανΓ

ν
µβ

We can do the same for any vector or tensor quantity; that of the metric tensor gµν is particularly interesting:

gµν||α||β − gµν||β ||α = −gµλRλναβ − gλνR
λ
µαβ

= −
�

Rµναβ + Rνµαβ
�

If the non-metricity tensor vanishes, then we have the usual Riemannian symmetry property Rµναβ = −Rνµαβ (it
can also be shown that Rµναβ = Rαβµν). But in the Schrödinger geometry it does not vanish, so there is a problem.
This is most evident in its inability to reproduce the traditional Bianchi identity (6.2), which can be traced to the
reduction of the quantity gµνRα

µλν
= gµνgαβRβµλν. In the Schrödinger (and Weyl) geometry, interchange of the

β ,µ indices is no longer antisymmetric, which blocks a straightforward derivation of the usual conservation
condition

�

Rµν −
1
2

gµνR
�

||ν
= 0

The problem also arises when we try to derive the same conservation condition for the action
∫p
−g R d4 x . The

same problem exists for Weyl’s geometry, but this did not prevent his proposal of the conformally invariant
Lagrangian

p
−g R2 because his connection term was itself scale invariant. As a result, equations of motion for the

Schrödinger geometry cannot be derived, since it is impossible even to propose a conformally invariant version of
(6.1).

In summary, we have seen that Schrödinger’s connection allows for vector quantities that are either fixed or
variable under parallel transport, which provides a mathematically consistent way of avoiding Einstein’s objection
to Weyl’s geometry. However, while Schrödinger’s geometry appears to be simpler and more elegant than Weyl’s,
it represents a physical dead end as far as equations of motion are concerned.

7. Conclusions

We have shown that both the Weyl and Schrödinger geometries, while conceptually intriguing, are problematic
with regard to interpretation and meaning due primarily to the non-metricity tensor. They are also problematic in
that they are inconsistent with the Bianchi conservation condition. These drawbacks can be traced to the fact that
several important symmetry properties of the Riemann-Christoffel tensor are invalidated in the presence of a
non-vanishing non-metricity tensor.

Although Weyl’s formalism cannot account for the existence of fixed-magnitude vector quantities under parallel
transport, its built-in aspect of conformal invariance displays a certain aesthetic appeal that has persisted for over
a century. Furthermore, Weyl’s notion of conformal invariance led directly to the fundamental concept of gauge
invariance in quantum theory, which has become a cornerstone of theoretical quantum physics. The formalism
also provides a means of proposing a simple scale-invariant action whose equations of motion are comparable to
those of the Einstein field equations.
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By comparison, the Schrödinger formalism appears to provide a mathematically legitimate way out of Einstein’s
objection to Weyl’s theory, but at the expense of requiring a connection that cannot be made conformally invariant.
This single drawback prevents formulation of a suitable action Lagrangian or associated equations of motion.

The concept of gauge invariance in general relativity, as first investigated by Weyl, and the subsequent
investigations of Schrödinger, are interesting but appear to be dead ends. It is ironic that while Einstein’s
objections to Weyl’s geometry appear to be surmountable, the existence of a non-vanishing non-metricity tensor
makes such theories fundamentally unphysical. The only alternative, then, appears to be a strict adherence to
Riemannian geometry, whose classical predictions to date regarding general relativity have withstood the test of
time and experiment.

References

1. R. Adler, M. Bazin, M. Schiffer, Introduction to general relativity, 2nd Ed., McGraw-Hill (1975).

2. A. Eddington, The mathematical theory of relativity, Chelsea Publishing, 1923.

3. C. Lanczos, A remarkable property of the Riemann-Christoffel tensor in four dimensions, Ann. Math. 39 4
(1938) pp. 842-850.

4. H. Lorentz, A. Einstein, H. Minkowski and H. Weyl, The principal of relativity, Dover Publications, 1952.

5. P. Mannheim and D. Kazanas, Exact vacuum solution to conformal Weyl gravity and galactic rotation curves,
Astrophys. J. 342 (1989).

6. A. Pais, Subtle is the Lord: the science and the life of Albert Einstein, Oxford University Press, 2005.

7. H. Weyl, Space-time-matter, Dover Publications, 1952.

10


