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I’ve been planning for some time now to provide a simplified write-up of Weyl’s seminal 1929 paper
on gauge invariance. I’m still planning to do it, but since Weyl’s paper covers so much ground I thought I
would first address a discovery that he made kind of in passing that (as far as I know) has nothing to do
with gauge-invariant gravitation. It involves the mathematical objects known as spinors. Although Weyl
did not invent spinors, I believe he was the first to explore them in the context of Dirac’s relativistic electron
equation. However, without a doubt Weyl was the first person to investigate the consequences of zero mass
in the Dirac equation and the implications this has on parity conservation. In doing so, Weyl unwittingly
anticipated the existence of a particle that does not respect the preservation of parity, an unheard-of idea
back in 1929 when parity conservation was a sacred cow. Following that, I will use this opportunity to derive
the Dirac equation itself and talk a little about its role in particle spin.

Those of you who have studied Dirac’s relativistic electron equation may know that the 4-component
Dirac spinor is actually composed of two 2-component spinors that Weyl introduced to physics back in 1929.
The Weyl spinors have unusual parity properties, and because of this Pauli was initially very critical of
Weyl’s analysis because it postulated massless fermions (neutrinos) that violated the then-cherished notion
of parity conservation. In this write-up, we explore the concept of a spinor, which is what Nature uses to
describe fermions. We then proceed to the Dirac equation and discuss Weyl’s contribution to what is surely
one of the most profound discoveries of modern physics. Because the spinor formalism is closely tied to the
Lorentz Group of spacetime rotations, we’ll first review this topic in three and four dimensions. The Weyl
spinors will then fall out automatically from this analysis.

Incidentally, you may be aware that there are two ways to derive Dirac’s electron equation. The easy way
consists of following Dirac’s original approach, in which he basically took the square root of the relativistic
mass-energy equation E2 = m2c4 + c2p2. Unfortunately, this approach allows the student to pretty much
avoid understanding what a spinor really is (when I first learned about the Dirac equation, I persisted in
looking upon the Dirac spinor as an ordinary four-component scalar that happened to have an odd way of
transforming under Lorentz transformations). Sooner or later you’re going to have to learn about spinors,
and the second approach I’ll describe in the following pages is probably the simplest you’re likely to find. In a
very real way, spinors are more fundamental than the scalars, vectors and tensors that were, after all, pretty
easy to learn when you were first exposed to them. Since most of the observable matter in the universe is
composed of fermions (electrons, protons, etc.), it’s a good idea to acquire a basic understanding of spinors.

The following pages are kind of dry and boring and so, to liven things up at least a bit, consider the
following excerpt from an interview that Dirac gave in America to a rather obnoxious newspaperman way
back in April 1929:

“And now I want to ask you something more: They tell me that you and Einstein are the only
two real sure-enough high-brows and the only ones who can really understand each other. I won’t
ask you if this is straight stuff for I know you are too modest to admit it. But I want to know
this – Do you ever run across a fellow that even you can’t understand?”

“Yes,” says he.

“This will make a great reading for the boys down at the offi ce,”says I. “Do you mind releasing
to me who he is?”

“Weyl,” says he.

The interview came to a sudden end just then, for the doctor pulled out his watch and I dodged
and jumped for the door. But he let loose a smile as we parted and I knew that all the time he had
been talking to me he was solving some problem that no one else could touch. But if that fellow
Professor Weyl ever lectures in this town again I sure am going to take a try at understanding
him! A fellow ought to test his intelligence once in a while.
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1. Strolling Over a Bridge
On the evening of October 16, 1843, the great Irish mathematician William Rowan Hamilton was walking

with his wife (with whom he shared a notoriously unhappy marriage) on the path along the Royal Canal in
Dublin. Hamilton had been thinking of about the mathematics of complex numbers, and how it might be
extended from the plane of one real and one imaginary component (x+ iy) to one real and three imaginary
components (his reasoning for this has been well documented, but that’s another story). When the couple
reached the Brougham Bridge, the solution suddenly jumped into Hamilton’s mind. Taking out his pocket
knife, and possibly to the trepidation of his wife, he scratched out the following expression on one of the
stones of the bridge:

I2 = J2 = K2 = IJK = −1

Here, Hamilton’s I, J,K are all imaginary quantities that form the basis of what became known as quater-
nions, quantities that pre-date the modern form of today’s vectors. In Hamilton’s time quaternions enjoyed
a vogue of sorts, but nowadays they are considered just part of the quaint lore of mathematics. Nevertheless,
they provide a means of understanding the mathematical objects known as spinors, which are of considerable
importance in quantum theory. In modern notation, Hamilton’s imaginary quantities are nothing more than
the Pauli spin matrices multiplied by the imaginary number i:

I = iσx

J = iσy

K = iσz

where

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
(1.1)

whose properties you are surely already aware of.

Brougham Bridge, Dublin

Hamilton’s quaternions provide a compact way of understanding the geometrical basis of rotations in
three and four dimensions, and at the same time they provide a means of introducing one of the most bizarre
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aspects of the spinor formalism (which you’re about to discover). Hamilton also used quaternions to show
how multiple rotations could be expressed as a single rotation. Let’s take a cube, centered at the origin of
an xyz coordinate system, and observe one of the corners, P (see figure below). Let us now rotate the cube
90◦ counterclockwise about the x axis as shown. Having done this, let us now rotate the cube again 90◦

counterclockwise about the y axis. This returns P to its original position in the coordinate system, although
the cube itself has been turned around somewhat. Now ask yourself how we might have achieved this result
in a single rotation about some particular axis. A little thought will tell you that by rotating the cube
counterclockwise about the diagonal axis joining the original point and the cube’s center, we can achieve the
same result with one rotation. Hamilton came up with a neat formula for this, although you’ll have to do
some digging in the math literature to find the damn thing (I found the equation in Misner-Thorne-Wheeler’s
Gravitation). It is

R(θ) = cos
θ

2
− i
[
σx cosϕx + σy cosϕy + σz cosϕz

]
sin

θ

2
(1.2)

Here, θ is the amount of rotation about some axis, and the ϕn are the angles between that axis and those of
the unit vectors in the coordinate system. For the example of our rotated cube, we have for the first rotation

R1(90) = cos
90

2
− iσz sin

90

2

=
1√
2

(1− iσz)

z

y
x

z

y
x

z

y
x

P
P

P

(This results because ϕx = ϕy = 90◦ and ϕz = 0.) Similarly, the second rotation gives

R2(90) = cos
90

2
− iσy sin

90

2

=
1√
2

(1− iσy)

The resultant combination of these two rotations can be expressed as Rf = R2 ·R1, or

Rf =
1

2
(1− iσy)(1− iσz)

=
1

2
(1− iσy − iσz − iσx) (1.3)

where I have used the identity σyσz = iσx in the last step. Thus

Rf = cos
θf
2
− i
[
σx cosϕxf + σy cosϕyf + σz cosϕzf

]
sin

θf
2

(1.4)
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Equating like terms in (1.3) and (1.4), we see that

θf = 120◦

ϕall f = arccos(
1√
3

) = 54.7◦

Hamilton’s rotation equation is pretty neat all by itself, but the point I’m trying to make here is that there
seems to be a connection between half angles and the Pauli matrices. As we will see, there is indeed a deep
connection.

2. The Lorentz Group of Rotations
In order to understand the spinor concept, it is helpful to have a command of the algebra of ordinary

rotations in three dimensions. If we rotate the coordinates counterclockwise about the z axis, the coordinates
in the rotated system are given by

x = x cos θ + y sin θ

y = −x sin θ + y cos θ

z = z (2.1)

or X = Rz(θ)X, where

Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 , X =

xy
z


You should also be familiar with the forms for rotations about the x andy axes as well:

Rx(θ) =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 , Ry(θ) =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (2.2)

It is easy to express these matrices as exponential operators. Let’s expand the infinitesimal rotation
matrix Rz(dθ) to first order about θ = 0:

Rz(dθ) = Rz(0) +
∂Rz
∂θ
|
θ=0

dθ + ...

where Rz(0) = I. We define the rotation generator for the z axis to be

Jz = −i∂Rz
∂θ
|
θ=0

= −i

 0 1 0
−1 0 0
0 0 0


For rotations about the x and y axes, we have the similar definitions

Jx = −i

0 0 0
0 0 1
0 −1 0

 , Jy = −i

0 0 −1
0 0 0
1 0 0


These matrices do not commute, so the rotation order is important. However, we have the familiar commu-
tation relation

[Ji, Jk] = JiJk − JkJi = iεiklJl (2.3)

where εikl is the completely-antisymmetric Levi-Civita tensor. For a finite rotation around the z axis, we
can build up the rotation angle θ in the usual way by using a succession of n infinitesimal angles dθ; i.e.,
θ = ndθ, so that

Rz(θ) = lim
n→∞

[
1 + iJz

θ

n

]n
= exp iJzθ
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For rotations about any combined axis, we have

Rn(θ) = exp iJ · nθ (2.4)

where n is a unit vector in the direction of J . All of this should be familiar from your classical mechanics
courses. The extension to quantum mechanical systems is straightforward.

In view of the commutation relation (2.3), it is easy to see that any combination of successive rotations
will ultimately reduce to either Jx, Jy or Jz. Therefore the Js form a closed and complete symmetry group
which is called the special orthogonal rotation group for three dimensions, or SO(3). It’s called special
and orthogonal because each of the three rotation matrices R has a unit determinant (detR = 1) and is
orthogonal ( i.e., the transpose is equal to the inverse, RT = R−1).

Mathematicians observed many years ago that the SO(3) group is closely associated with another group
called SU(2). This group involves the Pauli spin matrices, which also form a closed and complete group.
The starting point for SU(2), which means special unitary group in two dimensions, involves taking a linear
combination of the Pauli matrices, which we’ll write as

σ · x = σ0x
0 + σxx+ σyy + σzz

=

[
x0 + z x− iy
x+ iy x0 − z

]
(2.5)

where σ0 ≡ I (the four quantities σµ make up the Hamilton quaternion). (Actually, by adding the σ0x0 term
it’s looks like we’re really dealing with SO(4) symmetry, but we’re not.) The above matrix is Hermitian
and has the determinant (x0)− (x2+y2+ z2), which represents the invariant length of a vector in four-space
(i.e., rotations have no effect):

(x0)2 − x2 − y2 − z2) = (x0)2 − x2 − y2 − z2 (R −→ R)

In view of these properties, consider a similarity transformation of σ · x by an arbitrary 2×2 unitary matrix
U , which we’ll write as

U =

[
a b
c d

]
For simplicity, let detU = 1. For unitary U , U−1 must be identical to its conjugate transpose:

U† = U−1, or[
a∗ c∗

b∗ d∗

]
=

[
d −b
−c a

]
Therefore,

U =

[
a b
−b∗ a∗

]
, |a|2 + |b|2 = 1 (2.6)

Because a and b are arbitrary complex numbers, this leaves three quantities that can be used to represent
the three rotations in ordinary three dimensional space.

Now consider the transformation
σ · x = U(σ ·x)U † (2.7)

Because of the unitary properties of U , the transformed quantity σ · x will also be Hermitian with unit
determinant. More importantly, it will also have the same form of σ · x; that is,

σ · x =

[
x0 + z x− iy
x+ iy x0 − z

]
(2.8)

At this point, you should be wondering whether the transformation matrix U can be made to reproduce the
system of rotation equations given by (2.1) and (2.2). To find out, let us carry of the transformation (2.7).
We get [

x0 + z x− iy
x+ iy x0 − z

]
=

[
a b
−b∗ a∗

]
·
[
x0 + z x− iy
x+ iy x0 − z

]
·
[
a∗ −b
b∗ a

]
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Equating matrix elements and collecting terms, we have the four conditions

x0 + z = (aa∗ + bb∗)x0 + (a∗b+ ab∗)x+ i(a∗b− ab∗)y + (aa∗ − bb∗)z
x− iy = (aa− bb)x− i(aa+ bb)y − 2abz

x+ iy = (a∗a∗ − b∗b∗)x+ i(a∗a∗ + b∗b∗)y − 2a∗b∗z

x0 − z = (aa∗ + bb∗)x0 − (a∗b+ ab∗)x− i(a∗b− ab∗)y − (aa∗ − bb∗)z

From aa∗ + bb∗ = 1, we immediately have x0 = x0. We can still specify up to three identities for a and b.
You should have no trouble verifying the following selections for these variables:

Case 1. a = cos 12θ, b = i sin θ. Then

x = x

y = y cos θ + z sin θ

z = −y sin θ + z cos θ

Case 2. a = cos 12θ, b = sin 1
2θ. Then

x = x cos θ − z sin θ

y = y

z = x sin θ + z cos θ

Case 3. a = exp
[
1
2 iθ
]
, b = 0. Then

x = x cos θ + y sin θ

y = −x sin θ + y cos θ

z = z

All of these these expressions are equivalent to

U =

[
cos 12θ i sin 1

2θ
i sin 1

2θ cos 12θ

]
= cos

1

2
θ + iσx sin

1

2
θ ∼ Rx(θ)

U =

[
cos 12θ sin 1

2θ
− sin 1

2θ cos 12θ

]
= cos

1

2
θ + iσy sin

1

2
θ ∼ Ry(θ)

U =

[
exp

[
1
2 iθ
]

0
0 exp

[
− 12 iθ

]] = cos
1

2
θ + iσz sin

1

2
θ ∼ Rz(θ)

In similarity to (2.4), these equations can be written with the single elegant expression

U = exp

[
1

2
iσ · θ

]
= exp

[
1

2
iσ · nθ

]
(2.9)

This is the justification for asserting that there is an association between SO(3) and SU(2). The presence
of half angles in these quantities was unavoidable, and confirms what we saw in Hamilton’s formula. It also
sets the stage for much of what is to follow. Note that the correspondence between SO(3) and SU(2) might
have been guessed in view of the algebraic similarity of the commutations

[Jx, Jy] = iJz and

[
σx
2
,
σy
2

] =
1

2
iσz (et cycl.)

In summary, we say that

U = exp

[
1

2
iσ · θ

]
= cos

1

2
+ iσ · n sin

1

2
θ corresponds to

R = exp [iJ · nθ] = cos θ + iσ · n sin θ
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The correspondence between SO(3) and SU(2) is called an isomorphism.

Now, an arbitrary two-component spinor ξ transforms using the same unitary operator U :

ξ = Uξ

It is easy to see that the inner or dot product of a spinor ξ†ξ with itself transforms according to

ξ†ξ =
[
ξ∗1 ξ∗2

] [ξ1
ξ2

]
= |ξ1|2 + |ξ2|2,

ξ
†
ξ = |ξ1|2 + |ξ2|2

However, the outer product transforms like

ξξ† =

[
ξ1
ξ2

] [
ξ∗1 ξ∗2

]
=

[
|ξ1|2 ξ1ξ

∗
2

ξ∗1ξ2 |ξ2|2
]
,

ξξ
†

= U
(
ξξ†
)
U†

which is just like the transformation in (2.7). Furthermore, the determinants of these outer products are
preserved (i.e., they vanish), which is also characteristic of the quaternion σ ·x. Therefore, we would expect
that all spinors transform in the SU(2) symmetry space outlined above for rotations. In the next section, we’ll
see that Lorentz transformations can be added in as well, and a little later we’ll see that spinors transforming
under pure Lorentz transformations (no rotations) play a central role in the description of spin-1/2 particles.

The crazy thing about spinors can be traced to the presence of half angles in the unitary transformations
that they operate under. Ordinarily, when one rotates an object 360◦, it goes back to the same thing it
started out as. This is common sense, but as you learned in elementary quantum mechanics, common sense
can be misleading. Consider the following situation (this is also from Gravitation). You are given a cube
whose eight corners are tied by rubber bands to the eight respective corners of the room you’re sitting
in. Everything is neat and symmetric. Now rotate the cube 360◦ in the xy plane (either direction). The
rubber bands are now tangled. Take my word for it that nothing you can do (short of rotating the cube
back to its starting point) will untangle the rubber bands. Now rotate the cube another 360◦ in the same
direction as before. Alas, the rubber bands are now even more tangled. But wait a minute —by a clever
trick, and without touching the cube, you can maneuver the two tangled bunches of rubber bands around
each other and untangle the mess, bringing things back to the way they were before. I won’t go into it, but
the topology of the tangled rubber bands mirrors the world that spinors live in —a 360◦ rotation doesn’t do
the job; instead, you need a 720◦ rotation to make things right again, because half angles are at work here.
Spinors are rather like vectors that change sign when rotated 360◦, and don’t come “home”until two full
rotations (720◦) have been made.

3. Lorentz Transformations
The group of rotations that we have investigated up to now can be shown to include Lorentz transfor-

mations (or Lorentz “boosts”), which can be described as the symmetry group SO(3,1). Recall that two
inertial coordinate systems S and S moving with constant velocity v with respect to one another in the
positive x direction are related by

x0 = γ(x0 − βx)

x = γ(x− βx0)
y = y

z = z

where β = v/c and

γ =
1√

1− β2

7



In matrix form, we can write this as

Λx =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1


Notice that the identity γ2(1 − β2) = 1 can be used to make the substitution coshφ = γ, sinhφ = γβ, φ =
arctanhβ. We can then write

Λx(φ) =


coshφ − sinhφ 0 0
− sinhφ coshφ 0 0

0 0 1 0
0 0 0 1

 (3.1)

It will be helpful at this point to digress to the case of an infinitesimal Lorentz transformation, as it will
be of use later. Because the transformation can be written as

xµ = Λµα(φ)xα

an infinitesimal transformation in the x-direction can be expressed as

Λµα(∆φx) = δµα + ∆ωµα

where

∆ωµα =


0 −∆φx 0 0

−∆φx 0 0 0
0 0 0 0
0 0 0 0


An interesting thing occurs when we contract this matrix using the metric tensor gµν ; we get, as expected,

∆ωνα = gµν∆ωµα

Now, the line element ds2 = gµνdx
µdxν = dxµdx

µ is an invariant, and we know that dxµ = Λµα dx
α, so

dxµdx
µ = Λ β

µ Λµα dxβ dx
α

(This also shows that Λ β
µ Λµα = δβα.) For an infinitesimal transformation, this requires that(

∆ωβα + ∆ω β
α

)
dxβ dx

α = 0 or

(∆ωβα + ∆ωαβ) dxαdxβ = 0, so that

(∆ωβα + ∆ωαβ) = 0

That is, the contracted form ∆ωαβ is antisymmetric in its two indices. We then have terms like

∆ω01 = g0µ∆ωµ1 = ∆ω01 = −∆φx and

∆ω10 = g1µ∆ωµ0 = −∆ω10 = ∆φx

so that

∆ωαβ =


0 −∆φx −∆φy −∆φz

∆φx 0 0 0
∆φy 0 0 0
∆φz 0 0 0


The rotation matrices can be added into this as well. Since the off-diagonal elements of Rn(θ) are already
antisymmetric, contraction with gµν just changes the sign order. We then have

∆ωαβ =


0 −∆φx −∆φy −∆φz

∆φx 0 −∆θz ∆θy
∆φy ∆θz 0 −∆θx
∆φz −∆θy ∆θx 0

 = ∆ω Iαβ (3.2)
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where ∆ω is an infinitesimal “angle”and Iαβ is the associated antisymmetric matrix of ±1 elements. This
matrix will be of considerable use when we investigate the covariance of the Dirac electron equation.

Using a similar approach to what we did with the rotation matrices, we can develop generators for the
Lorentz boost transformations. We define the generator Kx(φ) for the x-direction transformation to be

Kx(φ) = −i∂Λx
∂φ
|
φ=0

(3.3)

= −i


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


(Obviously, by reversing the velocity direction the −1 terms become +1.) Similarly, we have

Ky(φ) = −i


0 0 −1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 , Kz(φ) = −i


0 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 0

 (3.4)

The commutation relations for these operators are nothing short of amazing. Let us first convert the J
rotation matrices to four-dimensional form:

Jx(θ) = −i


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 , Jy(θ) = −i


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 , Jz(θ) = −i


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0


It is now a simple matter to show that

[Kx,Ky] = −iJz (3.5)

[Jx,Ky] = iKz

[Jx, Jy] = iJz

Thus, the product of two Lorentz boosts (3.5) results in a rotation! (in electrodynamics, this is responsible for
the so-called Thomas precession). Consequently, the boost generators Kn do not form a group by themselves,
because they are mixed up with the rotation generators. However, it is easy to show that the combinations
defined by Jn+ = 1

2 (Jn + iKn), Jn− = 1
2 (Jn − iKn)satisfy

[Ji+, Jj+] = iεijkJk+

[Ji−, Jj−] = iεijkJk−

[Ji+, Jj−] = 0 (3.6)

The remarkable thing about these commutation relations is that Jn+ and Jn− each constitute a continuous
group and, by (3.6), these two groups are distinct. Consequently, the Lorentz group of rotations and boosts
must give rise to two distinctly different kinds of spinors in the associated space of SU(2); the mathematically
inclined say that SO(3,1) ~SU(2)⊗SU(2). The isomorphism between the two groups is therefore double
(it’s sometimes referred to as a double cover) with respect to the two-dimensional group of unitary trans-
formations. This rather subtle fact has enormous consequences in the physics of spin-1/2 particles since it
allows for the existence of two fundamentally different species of spinors.

4. The Lorentz Group and SU(2)
The isomorphism between SO(3) and SU(2) is

R = exp iJ · nθ ←→ U = exp
1

2
iσ · nθ
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where ←→ expresses that the two groups have the indicated correspondence. So what is the correspondence
between SO(3,1) and SU(2)? From the above expression, we see that the correspondence between the
“vectors”J and σ is just

J ←→ 1

2
σ

Therefore, a likely connection for the combination of rotations and boosts is

Jn− =
1

2
(Jn − iKn)←→ 1

2
σ and (4.1)

Jn+ =
1

2
(Jn + iKn)←→ 1

2
σ (4.2)

and each of these expressions is expected to correspond to a distinct spinor. Now, the Jn are connected
to rotations (θ), while the Kn are associated with Lorentz boosts (φ). Therefore, we might expect that
J ←→ 1

2σ always, while K ←→ ±
1
2 iσ. From (4.1) and (4.2), we see that

J ←→ 1

2
σ, K ←→ +

1

2
iσ for Jn+ = 0

J ←→ 1

2
σ, K ←→ −1

2
iσ for Jn− = 0

Let’s denote the spinor associated with the first case as ϕR and ϕL for the second. Then their respective
transformation must look like

ϕR = exp

[
1

2
iσ · θ +

1

2
σ · φ

]
ϕR = NϕR (4.3)

ϕL = exp

[
1

2
iσ · θ − 1

2
σ · φ

]
ϕL = MϕL (4.4)

(Note the absence of the imaginary i with respect to the boost terms.) In spite of their apparent similarity,
the two transformation matrices N and M represent totally different representations of the Lorentz Group;
taken together, they constitute a kind of hybrid symmetry known as the SL(2,C) group. The spinors ϕR
and ϕL are known as Weyl spinors, in honor of the man who first deduced their existence in 1929. In older
texts they are sometimes referred to as dotted and undotted spinors, respectively. We shall see that the
designations ϕR and ϕL (standing for right and left) are very fitting for these quantities.

5. An Aside on Parity
As you are probably aware, the symmetry known as parity or reflection symmetry involves replacing

every instance of x, y, z in an expression with −x,−y,−z. Notice that, for ordinary rotations, these reflections
have no effect on J , so rotations are parity-conserving. This is not the case for K, however, because a parity
operation changes the boost direction and therefore the sign of K changes as well. From (4.3) and (4.4), it
is easy to see that ϕR and ϕL change into one another under a parity operation. Consequently, just one of
the Weyl spinors is not suffi cient to guarantee parity preservation —we need to have both of them working
together. By stacking these spinors on top of one another, we can construct a four-component spinor that
does preserve parity:

ψ =

[
ϕR
ϕL

]
(5.1)

And this is the Dirac spinor! The Dirac spinor applies to massive fermions, all of which are known to obey
parity conservation. In view of (4.3) and (4.4), you should now be able to see that Dirac spinor transforms
like [

ϕR
ϕL

]
=

[
exp

[
1
2 iσ · θ + 1

2σ · φ
]

0
0 exp

[
1
2 iσ · θ −

1
2σ · φ

]] [ϕR
ϕL

]
(5.2)

where each term represents a 2× 2 matrix.

Later, we will see that for massless particles either of the Weyl spinoral representations holds, in spite
of the above assertion that a single Weyl spinor cannot preserve parity. Such particles (neutrinos) were
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observed in December 1956. Thus, Weyl’s 1929 paper paved the way for one of mankind’s most profound
discoveries —neutrinos exist and are all described by the Weyl spinor ϕL, which violates parity! Although
Pauli was the first to predict their existence (for a totally different reason), he rejected Weyl’s paper out
of hand solely because of the parity-violation issue. And while Pauli lived to witness the 1956 discovery of
neutrinos and the downfall of parity (he died in 1958), Weyl, who passed away in 1955, sadly did not.

6. Dirac’s Equation
Now for the Dirac equation, which is the relativistically correct expression for spin-1/2 particles. Con-

sider the individual Weyl spinors transformed by a pure Lorentz boost (no rotations) for a free particle of
mass m:

ϕR(p) = exp

[
+

1

2
σ · φ

]
ϕR(0) =

[
cosh

1

2
φ− σ · n sinh

1

2
φ

]
ϕR(0)

ϕL(p) = exp

[
−1

2
σ · φ

]
ϕL(0) =

[
cosh

1

2
φ+ σ · n sinh

1

2
φ

]
ϕL(0)

where it is assumed that we are transforming from states in which the boost momentum is zero to states
with 3-momentum p. It can easily be shown that

cosh
1

2
φ =

√
γ + 1

2
, (6.1)

sinh
1

2
φ =

√
γ − 1

2
(6.2)

where γ = (1− β2)−1/2. Then

ϕR(p) =

[√
γ + 1

2
+ σ · n

√
γ − 1

2

]
ϕR(0)

ϕL(p) =

[√
γ + 1

2
− σ · n

√
γ − 1

2

]
ϕL(0)

Now multiply the γ − 1 term by (γ + 1)/(γ + 1) in both expressions and expand the quantity in brackets
using both E = γmc2 and E2 = m2c4+ c2p ·p. You should be able to show without too much diffi culty that

ϕR(p) =
1

c
√

2m(E +mc2)

[
E +mc2 + cσ · p

]
ϕR(0), (6.3)

ϕL(p) =
1

c
√

2m(E +mc2)

[
E +mc2 − cσ · p

]
ϕL(0) (6.4)

In the state where the momentum is zero, we obviously have ϕR(0) = ϕL(0). Dividing (6.3) and (6.4) by
each other in turns, we then have

ϕR(p) =
E +mc2 + cσ · p
E +mc2 − cσ · pϕL(p) and (6.5)

ϕL(p) =
E +mc2 − cσ · p
E +mc2 + cσ · pϕR(p) (6.6)

These expressions can be simplified even further. For example, in (6.5) multiply top and bottom by E +
mc2 + cσ · p, then use the equivalent energy formula

E2 = m2c4 + c2(σ · p)2

(remember that p is not an operator in this expression) and simplify. After some tedious but simple algebra,
you should be able to show that

ϕR(p) =
E + cσ · p

mc2
ϕL(p) and

ϕL(p) =
E − cσ · p

mc2
ϕR(p)
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We’re nearly done. Express this as the homogeneous matrix equation[
−mc2 E + cσ · p

E − cσ · p −mc2
] [
ϕR
ϕL

]
= 0

where each component in the matrix is itself a 2× 2 matrix. Because E = cp0, we can write this as[
−mc p0I + σ · p

p0I − σ · p −mc

] [
ϕR
ϕL

]
= 0

In four-dimensional form, this goes over to
−mc 0 p0 + pz px − ipy

0 −mc px + ipy p0 − pz
p0 − pz −px + ipy −mc 0
−px − ipy p0 + pz 0 −mc



ϕR 1
ϕR 2
ϕL 1
ϕL 2

 = 0 (6.7)

where the column matrix on the right side is my sloppy way of writing the expanded form of the spinor. If
we now define the following 4× 4 matrices

γ0 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , γ1 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 (6.8)

γ2 =


0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0

 , γ3 =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 (6.9)

or

γ0 =

[
0 1
1 0

]
, γk =

[
0 −σk
σk 0

]
, (6.10)

then we can write (6.7) in the elegant covariant notation

[γµpµ −mc]ψ(p) = 0 (6.11)

where ψ(p) is the four-component stacked Weyl spinor [remember that pµ = (E/c,p) and pµ = gµνp
ν =

(E/c,−p).] This is the Dirac equation in the momentum representation, and ψ(p) is now called the Dirac
spinor. For the coordinate version of this expression, we simply replace pµ with the momentum operator
identity pµ = ih̄∂µ to get

[ih̄γµ∂µ −mc]ψ(x) = 0 (6.12)

The four matrices above are known as the Dirac gamma matrices in the Weyl representation. The
Dirac spinor in (5.1) and 6.11) is also in the Weyl representation. The Dirac equation, modified to include
the appropriate terms for an electron in the electrostatic field of a proton, provides a fantastically accurate
description of the energy levels and characteristics of the hydrogen atom. It’s just amazing! In my opinion,
the Dirac equation very possibly represents the pinnacle of human intellectual achievement, with quantum
electrodynamics (or M-theory?) a close second.

For particles that are not moving, the Dirac equation reduces to

γ0p0 = mcψ(x) or

p0 = mcγ0ψ(x) (6.13)

While there is nothing wrong with this expression, it would simplify matters somewhat if the matrix γ0 were
diagonal. You probably know that there is an alternate (and equivalent) set of Dirac matrices given by

γ0 =

[
1 0
0 −1

]
, γk =

[
0 σk
−σk 0

]
, (6.14)
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which is called the standard (or Dirac) representation. To convert from the Weyl form of γ0 to the other,
we use the following similarity transformation:

γ0Dirac = A
(
γ0Weyl

)
A−1 where

A = A−1 =
1√
2

[
1 1
1 −1

]
The matrix A also converts the Weyl spinor, the other matrices γkWeyl, and the spinor transform matrix (5.2)
into the Dirac representation, which become

ψDirac = AψWeyl

=
1√
2

[
1 1
1 −1

] [
ϕR
ϕR

]
=

1√
2

[
ϕR + ϕL
ϕR − ϕL

]
,

γkDirac =

[
0 σk
−σk 0

]
and

SDirac = ASWeylA
−1

= exp

[
1

2
iσ · θ

] [
cosh 1

2φ σ · n sinh 1
2φ

σ · n sinh 1
2φ cosh 1

2φ

]
(6.15)

where SWeyl is the transformation matrix in (5.2).

7. Weyl’s Neutrino
It was Weyl, in 1929, who noticed something odd about the Dirac equation for massless spin-1/2 particles

(at the time, massless spin-1/2 fermions were not known to exist). Going back to (6.11) and putting m = 0
and expanding, we get the decoupled set of equations

[p0 + σ · p]ϕL(p) = 0 and

[p0 − σ · p]ϕR(p) = 0

When m = 0, the energy equation reads E = c|p|, or p0 = |p|. Let us define the helicity of a massless
particle as the dimensionless quantity

σ· p̂ = σ · p
|p| (7.1)

Clearly, this is a measure of the spin component with regard to the direction of motion; a positive helicity
indicates that the spin is in the direction of motion (in the right-hand sense), and negative helicity when it
is opposite to the motion. Thus,

[σ · p̂]ϕL(p) = −ϕL(p) and (7.2)

[σ · p̂]ϕR(p) = +ϕR(p) (7.3)

As I mentioned earlier, these spinors violate conservation of parity. For this reason, Pauli considered them
to be unphysical and made a number of rather harsh statements regarding Weyl’s 1929 paper. The discovery
of the neutrino in 1956, however, completely vindicated Weyl. It turns outs that Nature respects parity with
regard to all the fundamental forces with the exception of the weak interaction, which involves neutrinos.
It also turns out that the neutrino is strictly described by the left-handed Weyl spinor ϕL. There are no
right-handed neutrinos in Nature at all —God decided in the beginning that Nature should be left-handed!

8. An Aside on the Neutrino
By the mid-1950s, particle physicists had acquired some experience with three recently-discovered un-

stable particles called pi-mesons or pions (π−, π+, π0) and their decay characteristics. In what surely ranks
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as the quickest experiment of its kind (it took several days), in 1957 Lederman observed the following decay
process:

π− → µ− + νµ

(there’s a similar decay in which π+ → µ+ + νµ) where the plus- and minus-pions decay into muons (µ−),
antimuons (µ+), muon antineutrinos (νµ) and muon neutrinos (νµ). Because neutrinos are uncharged and do
not feel the strong force, they are practically ghost particles —they rarely interact with anything and hence
are extremely diffi cult to detect. However, muons are charged and can easily be observed in the laboratory.
For decay processes in which the pions are initially at rest, the daughter particles must come out back to back
in order to conserve momentum. By following the spins and directions of the outgoing muons, Lederman
was able to deduce the following rule:

1. ALL NEUTRINOS ARE LEFT-HANDED (described by ϕL)

2. ALL ANTINEUTRINOS ARE RIGHT-HANDED (described by ϕR)

(Lederman received the Nobel Prize for his experimental verification of parity violation in 1988.) Neutrinos
must be massless and travel at the speed of light if these laws are to hold. Otherwise, a Lorentz transformation
could be used to effectively make a neutrino travel in a direction opposite to its line of motion, and the above
rules would not hold; in that case, neutrinos and their antimatter partners would both exhibit left- and
right-handedness. In recent years, there has been speculation that neutrinos have a small but non-zero mass,
and that they can convert into different types (there are three kinds of neutrino). This belies the fact that
to date no right-handed neutrinos have ever been observed, but the jury is still out on this.

9. Alternative Derivation of Dirac’s Equation
In addition to his non-relativistic wave equation, which was based upon E = p2/2m, Schrödinger derived

a relativistically correct form using the cartesian energy relation

E2 = m2c4 + c2p2 (9.1)

Using the usual quantum transcription rules

E → ih̄c ∂/∂x0,

cp̂j → −ih̄c−→∇j

he obtained, for a free particle,

−h̄2c2 ∂2Ψ

(∂x0)2
= m2c4 Ψ− h̄2c2∇2Ψ

Unfortunately, this equation didn’t work for the hydrogen atom (the calculated energy spectrum is too wide
compared to observation). The above equation, which is called the Klein-Gordan equation, works fine for
spinless particles but fails for fermions like electrons. Dirac also came across this equation, and decided that
it should reduce somehow to an expression that was linear in the time derivative, so he tried a “square root”
operation for (9.1) and proposed

E = βmc2 + cαjpj or

ih̄
∂ψ

∂t
= β mc2ψ − ih̄cαj ·

−→∇jψ (9.2)

where β and αj are coeffi cients. Because ordinary numbers cannot satisfy this expression, Dirac assumed
that these coeffi cients are 4× 4 matrices having the commutation properties

αjβ + βαj = 0

αiαj + αjαi = 0 (i 6= j)

α2j = β2 = 1
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These properties are satisfied by

β =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , α1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 (9.3)

α2 =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 , α3 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 (9.4)

The αj quantities are Hermitian (like β) and can be expressed in terms of the Pauli matrices as

αj =

[
0 σj
σi 0

]
(9.5)

where each entry in the matrix is itself a 2× 2 matrix. Similarly, we have

β =

[
1 0
0 −1

]
(9.6)

These are called the Dirac alpha and beta matrices. If we now multiply (9.2) through on the left by β and
divide by c, we get

ih̄β
∂ψ

∂x0
= mcψ − ih̄βαj

−→∇jψ

If we now let γ0 = β and γj = βαj ; this becomes

[ih̄γµ∂µ −mc]ψ = 0 (9.7)

which is the Dirac equation again, this time in the Dirac or standard representation.

While we’re at it, I may as well show you how the Dirac equation automatically includes fermion spin.
The Dirac Hamiltonian operator is

Ĥ = βmc2 + cαj p̂j

where p̂j = −ih̄∂/∂xj . Now, an operator Q̂ is said to be a constant of the motion if its time derivative,
defined as

ih̄
dQ̂

dt
= Q̂Ĥ − ĤQ̂,

is identically zero. The time derivative of the angular momentum operator L̂n, defined as

L̂n = εnjk xj p̂k

is then

ih̄
dL̂n
dt

= L̂nĤ − ĤL̂n

= εnjk xj p̂k(βmc2 + cαmp̂m)− (βmc2 + cαmp̂m)εnjk xj p̂k (9.8)

Since the βmc2 term contains no p̂, it commutes with everything; therefore, we can just drop that term and
write

ih̄
dL̂n
dt

= cαmεnjk(xj p̂kp̂m − p̂mxj p̂k)

Now, from the commutation condition

[xj , p̂m] = xj p̂m − p̂mxj = ih̄ δjm
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we have p̂mxj = xj p̂m − ih̄δjm, so that Eq. (9.8) becomes

ih̄
dL̂n
dt

= cαmεnjk(xj p̂kp̂m − xj p̂mp̂k) + ih̄cαj εnjk p̂k

= ih̄cαjεnjk p̂k (9.9)

Since this result is non-zero, we know that none of the angular momentum components L̂n is a constant
of motion, at least for a Dirac particle. But Dirac figured that nature must conserve something resembling
angular momentum, and he considered adding something to the L̂n that would satisfy the desired conservation
criterion. He then wrote down the following three 4×4 matrices (there seems to be no end of these matrices!):

Ŝn =
1

2
h̄

[
σn 0
0 σn

]
and proceeded to compute ih̄ dŜn/dt. In matrix notation, this is

ih̄
dŜn
dt

=
1

2
h̄c

[
σn 0
0 σn

] [
0 σk
σk 0

]
p̂k −

1

2
h̄c

[
0 σk
σk 0

] [
σn 0
0 σn

]
p̂k

or

ih̄
dŜn
dt

=
1

2
h̄c

[
0 σnσk

σnσk 0

]
p̂k −

1

2
h̄c

[
0 σkσn

σkσn 0

]
p̂k

Combining these two matrices, we have

ih̄
dŜn
dt

=
1

2
h̄c

[
0 σnσk − σkσn

σnσk − σkσn 0

]
p̂k

=
1

2
h̄c

[
0 −2i εnjk σj

−2i εnjk σj 0

]
p̂k (9.10)

Using the commutation properties for the Pauli matrices, (9.10) reduces, finally, to

ih̄
dŜn
dt

= −ih̄c
[

0 σj
σj 0

]
εnjk p̂k

= −ih̄cαjεnjk p̂k

But this is just (9.9) with a minus sign. Therefore, we have the conservation condition

ih̄
d(L̂n + Ŝn)

dt
= 0

Dirac called the Ŝn the spin matrices. This last result demonstrates that, for spin-1/2 particles at least, the
quantity that is conserved is the sum of the angular momentum and the spin.

10. Covariance of the Dirac Equation
When I first saw the Dirac equation, my first thought was that its obviously covariant form would allow

it to be easily recast in curved spacetime. I had a lot to learn, but first I had to be convinced that the
γ-matrices do not transform as four-vectors, for if they did, then the Dirac spinor would have to be just a
four-component scalar, which is not the case. Instead, the γ-matrices are considered fixed, and the spinors
transform under Lorentz transformations according to (6.15), as you already know. But there is a slightly
more elegant way to express the unitary transformation matrix that generalizes all possible directions in
the boost parameter. If the Dirac equation is truly covariant, and if the γ-matrices are not four-vectors,
then just how does the Dirac spinor transform in the complete Lorentz transformation of arbitrary boost
directions? Well, most texts give the answer as

ψ(x) = S ψ(x) and

ψ(x) = S−1 ψ(x) where

S = exp

[
− i

4
ωµνσ

µν

]
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and where σµν and ωµν are both antisymmetric 4×4 matrices. Where the hell do these matrices come from?
For rotations and boosts, we have the Dirac spinor transforming like

SDirac = exp

[
1

2
iσ · θ

] [
cosh 1

2φ σ · n sinh 1
2φ

σ · n sinh 1
2φ cosh 1

2φ

]
so the transformation matrix must somehow be equal to S. To derive it, let’s start by considering the Lorentz
covariance of the Dirac equation in what we will call the unprimed system O:

[ih̄γµ∂µ −mc]ψ(x) = 0 (10.1)

Assume that there is another observer in the primed system O′ whose coordinate system is described by the
infinitesimal Lorentz transformation

x′ = aµα x
α where

aµα = δµα + ∆ωµα

where ∆ωµα was defined earlier. In the primed system, the Dirac equation is

ih̄γµ∂µ′ψ
′(x′) = mcψ′(x′)

(Remember that the γ-matrices are fixed.) We then have only two transformations to deal with

∂µ = aαµ ∂α′ and

ψ(x) = S−1 ψ′(x′)

Plugging these expressions into (10.1), we get

ih̄γµS−1aαµ ∂α′ψ
′(x′) = mcS−1ψ′(x′)

(I moved the S−1 just to the right of γµ because it’s considered a constant matrix.) Left multiplying by the
matrix S gives

ih̄SγµS−1aαµ ∂α′ ψ
′(x′) = mcψ′(x′) (10.2)

This expression will have exactly the same form as that for O if we can show that

SγµS−1aαµ = γα

Multiplying on the right by aλα turns this into

SγλS−1 = γαaλα or, equivalently,

S−1γλS = γαaλα

(Remember that aαµ a
µ
β = δ α

β .) Since the transformation is infinitesimal, we let S vary only slightly from
unity and adopt the forms

S = 1− k∆ωµνσ
µν ,

S−1 = 1 + k∆ωµνσ
µν

where k is some convenient constant to be determined and σµν is an antisymmetric matrix of unknown
makeup for the time being (it must be completely antisymmetric, otherwise ∆ωµν would wipe out any
symmetric terms). Plugging this into (10.2), we have

γαaλα = γα(δλα + ∆ωλα) = γλ + γα∆ωλα

= (1− k∆ωµνσ
µν)γλ(1 + k∆ωµνσ

µν)

or
γλ + γα∆ωλα = γλ − k∆ωµνσ

µνγλ + kγλ∆ωµνσ
µν
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At this point we assume that ∆ωµν and γλ commute (you’ll see why shortly); we then arrive at

γν∆ωλν = k∆ωµν(γλσµν − σµνγλ)

We would now like to get rid of ∆ωµν . Notice that γν∆ωλν = γνgµλ∆ωµν and that

γνgµλ∆ωµν =
1

2
γνgµλ∆ωµν +

1

2
γνgµλ∆ωµν

=
1

2
γνgµλ∆ωµν −

1

2
γµgνλ∆ωµν

=
1

2
∆ωµν

[
γνgµλ − γµgνλ

]
(Watch your index juggling!) We then have

1

2
∆ωµν

[
γνgµλ − γµgνλ

]
= k∆ωµν(γλσµν − σµνγλ) or

1

2

[
γνgµλ − γµgνλ

]
= k(γλσµν − σµνγλ) (10.3)

since ∆ωµν is non-zero. We’ve rid ourselves of ∆ωµν , but still have no idea what σµν is. Since the right-hand
side of (10.3) is a commutator involving the γν , we suspect that σµν might consist of combinations of the
upper-index γ-matrices, and this is indeed the case. By writing

σµν =
i

2
(γµγν − γνγµ)

you can show that this satisfies (10.3) provided k = −i/4.
Now, as you might have already suspected, the matrix ∆ωµν is the same one we introduced back in

Section 3 (after all, Lorentz boosts and rotations must be brought into the analysis somewhere). This
assumption made, we have now derived the infinitesimal version of the transformation matrix. For finite
transformations, we write the ∆ωµν = ∆ω Iµν as we did earlier. A finite angle represents a sequential series
of transformations involving ∆ω. If we set ω = n∆ω, then

S → lim
n→∞

[
1− i

4
Iµνσ

µν ω

n

]n
or

S = exp

[
− i

4
ωµνσ

µν

]
where ωµν = ωIµν . This is the form for S you’ll most likely see in the literature.

To test all this, let’s say we’re transforming from a system at rest to a system moving with velocity
(boost) β in the x-direction. Then

S = exp

[
− i

4
σµνω

µν

]
= exp

[
1

2
ω01σ

01

]
or

S = cosh
1

2
φ− sinh

1

2
φ


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


which is the answer you’ll see in the textbooks. (It is also reminiscent of Hamilton’s rotation formula of
Section 1, making me wonder if S is the relativistic variant of that formula.)

11. The Dirac Spinor
So what does a Dirac spinor actually look like? To start, let’s expand (6.13) for a particle at rest, using

p0 = ih̄∂0 and the standard form of the β matrix:

ih̄∂0ψ(x) = mcγ0ψ(x) or

∂t


ψ1
ψ2
ψ3
ψ4

 = −imc2/h̄


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



ψ1
ψ2
ψ3
ψ4
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The solution to this system of equations is just

ψ1(x) = u1(0) exp (−iEt/h̄)

ψ2(x) = u2(0) exp (−iEt/h̄) (11.1)

ψ3(x) = v1(0) exp (+iEt/h̄)

ψ4(x) = v2(0) exp (+iEt/h̄)

where E = |mc2| and

u1(0) =


1
0
0
0

 , u2(0) =


0
1
0
0

 , v1(0) =


0
0
1
0

 , v2(0) =


0
0
0
1


This is the solution to Dirac’s equation for a spin-1/2 particle at rest. The quantities u1,2 and v1,2 are base
spinors. To get the solution for particles that are moving, we use the transform matrix (6.15). First note,
however, that

cosh
1

2
φ =

√
γ + 1

2
=

√
E +mc2

2mc2
,

sinh
1

2
φ =

√
γ − 1

2
=

√
E −mc2

2mc2

We then have, for θ = 0,

exp

[
cosh 1

2φ σ · n sinh 1
2φ

σ · n sinh 1
2φ cosh 1

2φ

]
=

√
E +mc2

2mc2


1 0 pz

E+mc2
px−ipy
E+mc2

0 1
px+ipy
E+mc2

−pz
E+mc2

pz
E+mc2

px−ipy
E+mc2 1 0

px+ipy
E+mc2

−pz
E+mc2 0 1


A straightforward application of this matrix to the base spinors then gives us, for the moving frame,

u1(p) =

√
E +mc2

2mc2


1
0
pz

E+mc2
px+ipy
E+mc2

 , u2(p) =

√
E +mc2

2mc2


0
1

px−ipy
E+mc2
−pz

E+mc2

 ,

v1(p) =

√
E +mc2

2mc2


pz

E+mc2
px+ipy
E+mc2

1
0

 , v2(p) =

√
E +mc2

2mc2


px−ipy
E+mc2
−pz

E+mc2

0
1


In view of the fact that the Dirac equation has solutions for both positive and negative energy (11.1),

the spinors u1,2(p) are called positive-energy solutions for matter, while the v1,2(p) are the negative-energy
solutions for antimatter. When he first derived his famous equation in 1928, Dirac was initially puzzled by
the negative-energy solutions because they implied that the associated particles would have positive charge
(he thought that they might in fact be related to protons). In the face of withering skepticism by his
colleagues, Dirac proposed that the negative-energy spinors actually described a new form of matter that
he called antimatter. It is a tribute to Dirac’s intellect and professional courage that he was able to sort
out the ambiguities in this interpretation and stick to his convictions. In 1932, the Caltech experimental
physicist Carl Anderson discovered the positively-charged anti-electron (now called the positron) in one of
his experiments.

I cannot adequately convey the admiration I feel for Dirac in making this discovery, nor my gratitude
to God for having lifted the scales from mankind’s eyes and giving us this fantastic gift. Stephen Hawking
has stated that if Dirac had somehow been able to patent his discovery, the royalties he would have received
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from the world’s electronics manufacturers alone would have made him a multibillionaire. As it was, in 1933
Dirac settled for a few thousand dollars and the Nobel Prize in Physics!

As we leave the Dirac spinor, keep in mind that the above analysis holds only for free spin1/2 particles.
Adding interaction effects is straightforward, but the analysis gets much messier. You will be happy to know,
however, that the solution to the Dirac equation for the hydrogen atom can be obtained in closed form, and
its predictions match experiment to within a small fraction of a percent.

12. Fast and Slow Electrons
The Weyl representation is tailor-made for the description of electrons moving at relativistic velocities.

At high speeds, the electron mass term in the Dirac equation can be considered negligible, and we can write

(γµpµ −mc)ψ → γµpµψ = 0

But this is just a restatement of the zero-mass problem that we addressed in Section 7. As we have seen, a
moving electron has only two degrees of freedom —it can spin in the direction of motion (positive helicity)
or it can spin opposite to the line of motion (negative helicity).

For slow-moving electrons, the three-momentum pi can be neglected; we are then left with

(γ0p0 −mc)ψ = 0 (12.1)

When this is the case, we choose to abandon the Weyl representation in favor of the Dirac set of gamma
matrices. Then (12.1) becomes [

E

c

[
1 0
0 −1

]
−mcI

] [
φ
χ

]
= 0

(The Dirac spinor is written in this way according to convention; we could have just as well used the ψDirac
form from Section 6.) Using E = mc2, this becomes simply[

0 0
0 1

] [
φ
χ

]
= 0

which leaves χ = 0. This means that for slowly-moving electrons the lower two-component spinor χ in
the Dirac equation is “small” compared with its upper counterpart φ. One can take advantage of this
fact when deriving the non-relativistic approximation of the Dirac equation, which of course reduces to the
two-component spinor version of Schrödinger’s equation.

13. Final Thoughts
I’ll make this final part quick. The gamma matrices have many amazing properties, and they figure

prominantly in all aspects of modern quantum physics —we’ve only barely stratched the surface. And yet,
they’re just constant matrices. From the identity gµν(x) = (γµγν + γνγµ)/2, you might have suspected
that there are versions of the gamma matrices that are coordinate-dependent, and there are. From this
perspective, the gamma matrices behave a little more like vector or tensor quantities (observe how many
times we raised and lowered indices on the γ-matrices and other matrix quantities using the metric tensor,
in spite of the fact that none of these matrices is a true four-vector). Years ago, while playing with Weyl’s
1918 theory, I naively transformed the Dirac matrices into polar form using

γ′µ =
∂xα

∂xµ′
γα, (13.1)

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

and got
γ′0 = γ0

γ′1 =


0 0 cos θ sin θe−iφ

0 0 sin θeiφ − cos θ
− cos θ − sin θe−iφ 0 0
− sin θeiφ cos θ 0 0
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γ′2 = r


0 0 − sin θ cos θe−iφ

0 0 cos θeiφ sin θ
sin θ − cos θe−iφ 0 0

− cos θeiφ − sin θ 0 0



γ′3 = r sin θ


0 0 0 −ie−iφ
0 0 ieiφ 0
0 ie−iφ 0 0
−ieiφ 0 0 0


All of which exhibit the same commutation properties as the γ-matrices along with the polar anticommutation
relations

γ′µγ
′
ν + γ′νγ

′
µ = 2gµν(r, θ)

Anyway, I solved the Dirac electron equation in the spherical field of a proton using these matrices and got the
same result given in my textbooks, so I suppose the approach has some merit (however, Pauli has shown that
in flat space, all gamma matrices are equivalent to the Dirac matrices up to a unitary transformation). [The
transformation coeffi cients in (13.1) provide an example of what is known as a vierbein in mathematical
physics, although vierbeins are normally used to transform flat-space quantities into their curved-space
counterparts.]

More interesting, however, is the observation that the covariant derivatives of the gamma matrices obey
an algebra that is consistent with the property

γ′µ||ν = −γ′ν||µ where

γ′µ||ν = γ′µ|ν − γ′λ
{
λ
µν

}
where the quantity in brackets is the Christoffel symbol of the second kind. (Vectors displaying this property
are known as Killing vectors. Since the γ′µ are not truly vectors, I don’t know if this property has any real
significance.) In Weyl’s spacetime gauge theory, the covariant derivative of the metric tensor is non-zero and
involves the Weyl field φµ. It would be interesting to know how Weyl would have approached the spherical
and curved-space forms of the Dirac matrices and if the Weyl field plays any role in this type of analysis.
Years ago, I used a revised form of Weyl’s theory to see if the gyromagnetic ratio of the electron differed
from integer 2 using curved-space variants of the spherical Dirac matrices presented above (but expressed
as the 4-vector quantities ψγµψ). I had hoped to get something like 2.002 (and maybe you know the reason
why). The result? It was too complex, and I couldn’t do it. Maybe you’ll have better luck, but then again
it may just be a colossal waste of time.
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