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Summary
Although Einstein was initially impressed with Hermann Weyl�s 1918 metric gauge theory of the

combined electromagnetic-gravitational �eld, he famously reversed his praise and rejected it on physical
grounds �the line element ds, as a proper-time measure of physical processes, was not gauge invariant.
But regardless of the legitimacy of Einstein�s argument, Weyl�s theory su¤ers from another defect, which is
its inability to accommodate vector �elds that are invariant with respect to parallel transport or
di¤erentiation. In this paper we examine this defect in the theory and propose a revision that preserves the
length of certain types of vectors. The revised space is seen to be mathematically consistent, although it
still does not refute Einstein�s objection. Using derived properties of constant-length vectors, simple
derivations of the Klein-Gordon and Dirac equations are presented using the revised Weyl formalism, which
indicate that the Weyl �-�eld may indeed be related to the electromagnetic four-potential.

1. Notation
Both the metric tensor g�� and the coe¢ cient of connection ���� are symmetric in their lower indices. In

Riemannian space, the connection is identi�ed with the Christo¤el symbol of the second rank

���� = �
�
�
��

�
consistent with the vanishing of the covariant derivative of the metric tensor (Ricci�s theorem). Except
when denoted otherwise, ordinary partial di¤erentiation is indicated by a single subscripted bar (e.g.,
g��j�), while covariant di¤erentiation is indicated by a double subscripted bar (g��jj�, etc.).

Covariant di¤erentiation of a covariant(contravariant) tensor introduces a positive(negative)
connection term for each index.

2. Introduction
In the years immediately following Einstein�s 1915 announcement of the theory of general relativity,

numerous physicists attempted to generalize the theory in order to incorporate electrodynamics as a purely
geometrical construct. By far the most interesting of these early attempts to unite gravitation and
electromagnetism was published in 1918 by the German mathematical physicist Hermann Weyl, then chair
of the mathematics department at the Eidgenössische Technische Hochschule (Swiss Federal Technical
Institute) in Zürich.

Einstein�s gravity theory is couched in the language of Riemannian geometry, which counts among its
few arbitrary axioms the demand that vector length or magnitude be invariant under the process known as
parallel transport. That is, if a vector is transported parallel to itself from one point in a Riemannian
manifold to another, its orientation or direction may change but its magnitude does not. By relaxing this
single requirement, Weyl discovered an intuitively straightforward way to generalize Riemannian geometry
that paved the way for his 1918 theory of the uni�ed gravitational-electromagnetic �eld.

Weyl proposed that physics should be invariant with respect to a rescaling of the metric tensor
(g�� ! �g��), where �(x) is an arbitrary gauge factor. Thus, all metric quantities are gauge-transformed,
including the metric tensor, the metric determinant

p�g, tetrads, the coe¢ cients of connection, and the
line element ds2 = g��dx

�dx� . Although initially impressed with Weyl�s idea, Einstein soon rejected the
theory on physical grounds. Einstein noted that the line element could be viewed as the proper-time
measure of the ticking of a clock associated with certain physical processes (such as the spacing of atomic
spectral lines) and, under a regauging of ds, these processes would become dependent upon their
prehistories. Weyl was unable to e¤ectively counter Einstein�s criticism, and by 1921 the theory had been
largely discounted.

Since that time, Weyl�s original theory has been reconsidered by numerous researchers in an attempt
to establish its relevance in modern physics, especially �eld theory, and there has been some speculation
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that Einstein�s criticism might be surmountable. However, completely apart from Einstein�s objection,
Weyl�s theory su¤ers from another, purely mathematical, inconsistency that would have doomed the theory
from the beginning, anyway. This inconsistency, which involves the theory�s inability to allow for parallel
transport of vectors having constant magnitudes (which we will henceforth call Riemannian vectors), can
be traced to Weyl�s connection term. A revised form of the Weyl connection, free of this inconsistency, is
proposed in the following.

3. Parallel Vector Transport
Weyl himself was instrumental in de�ning both the process of parallel transport and the de�nition of

the connection quantity in terms of a transported vector

d�� = �����
�dx� (3.1)

where ����(x) is the connection. In order to allow for variable vector length, Weyl had to assume that a
similar expression held for the change in vector magnitude, and he wrote

L2 = g��dx
�dx� ;

dL = a�� dx
�L (3.2)

where a is a suitable constant and ��(x) is a new vector �eld that Weyl subsequently identi�ed as the
electromagnetic four-potential.

However, there are vector quantities whose magnitudes are pure numbers, and it is di¢ cult to imagine
how the lengths of these �constant-length�vectors might vary under parallel transport or di¤erentiation
(note that this change in length is distinctly di¤erent from that resulting from a gauge transformation). As
an example, consider the simplest Riemannian vector, the unit vector U� = dx�=ds, whose magnitude is
unity:

1 = g��U
�U�

Parallel transferring both sides and relabeling indices, we have

0 = g��j�U
�U�U� + g��U

�dU� + g��dU
�U�

= g��jj�U
�U�U� (3.3)

where we have used (3.1). In Riemannian space, the covariant derivative of the metric tensor vanishes
identically, in accordance with Ricci�s theorem. Clearly, in Weyl�s theory a non-zero metric covariant
derivative is the key to the variation of vector magnitude under parallel transport. If this derivative
vanishes, then the connection can be expressed solely in terms of the metric tensor and its �rst derivatives
(i.e., the Christo¤el symbols).

Using Weyl�s ansatz (3.2), it is a simple matter to show that the metric covariant derivative is

g��jj� = 2ag���� (3.4)

It is similarly easy to show that this expression leads to a unique identi�cation of the connection coe¢ cient
in what is now called a Weyl space:

���� = �
�
�
��

�
+ a����� + a�

�
��� � ag��g���� (3.5)

Using these expressions, Weyl was able to develop a mathematically consistent description of both
gravitation and electrodynamics which, by employing a modi�ed Einstein-Maxwell action principle, led to
equations of motion. It was quickly realized by Pauli and others that the gravitational equations of motion
in Weyl�s theory were equivalent to those of Einstein�s theory under very plausible conditions.

4. Riemannian Vectors
In a Weyl space with a non-vanishing vector �eld ��, the length of an arbitrary vector is not only

allowed to vary, its variance is actually mandated �no vector is �constant.�For example, from (3.2)
parallel transport of the unit vector leaves a null result only for the trivial case �� = 0. Even in Weyl�s
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time, physicists pointed out that there are vectors whose magnitudes are pure numbers, and that these
quantities should not vary under parallel transfer or di¤erentiation. Perhaps the most obvious example is
the momentum four-vector

g��p
�p� = m2c2

whose length is a constant that logically should not change from point to point.

In order to accommodate Riemannian vectors in a Weyl space, it is obvious that the Weyl connection,
which was obtained via his de�nition of the metric covariant derivative, has to be modi�ed.

5. Revision of the Weyl Connection
Consider again the expression for the assumed invariance of the unit vector U� = dx�=ds,

g��jj�U
�U�U� = 0

It is clear from this equation that the metric covariant derivative either vanishes identically or satis�es the
peculiar cyclic symmetry condition

g��jj� + g��jj� + g��jj� = 0 (5.1)

It is easy to show that the only de�nition of the connection consistent with this condition is

���� = �
�
�
��

�
+ a����� + a�

�
��� � 2ag��g���� (5.2)

In view of the close similarity of this expression with Weyl�s, we will call the space de�ned by (5.2) a
generalized Weyl space. It will be noted that the revised connection, unlike the one in Weyl�s original
theory, is not gauge invariant, although the contracted connection ���� is fully gauge invariant.

With this de�nition, along with the symmetry condition in (5.1), it can be straightforwardly shown
that the metric covariant derivative is now

g��jj� = 2ag���� � ag���� � ag���� (5.3)

g��jj� = �2ag���� + a���g���� + a���g���� (5.4)

With the help of these expressions, it is easy to show that the following identities also hold in this Weyl
space:

g��jj� = a(n� 1)g���� (5.6)
p
�gjj� = a(n� 1)

p
�g ��

�� =
1

2a(n� 1)g
��g��jj�

where n is the dimension of spacetime (later we will be working solely with n = 4).

By contraction of (5.3) with g�� , it is easy to see that the connection in (5.2) can also be written as

���� = �
�
�
��

�
� g��g��jj� (5.7)

This expression was actually �rst suggested by Schrödinger, who in 1950 attempted to de�ne the most
general type of connection possible (symmetric and otherwise). He proposed that such a connection could
be expressed by

���� = �
�
�
��

�
� g��T��jj�

where Schrödinger�s unspeci�ed T -quantity has exactly the same symmetry properties as g��jj� . This
observation, along with the fact that the revised connection can accommodate Riemannian vectors under
parallel transport, gives considerable support to the proposition that (5.2) is the true connection.

Now that we have the necessary tools, let us now look at how Riemannian vectors behave in a
generalized Weyl space.
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6. Properties of Riemannian Vectors
Given any contravariant Riemannian vector ��(x), its constant magnitude or length can be expressed

as
L2 = g���

���

Covariant di¤erentiation of both sides with respect to x� followed by multiplication by �� gives

0 = g��jj��
����� + 2g���

���jj��
�

By (5.1), the �rst term vanishes and we are left with

�� �
�
jj��

� = 0

If �� is the unit vector dx�=ds, then we know that this is just the contracted equation of the geodesics,
U�jj�U

� = 0. Consequently, we will take as the �rst general property of Riemannian vectors the identity

��jj��
� = 0 (6.1)

Also, using the fact that �� �
� is a constant, (6.1) can be written as

��jj� �
��� = 0

indicating that ��jj� is either identically zero or antisymmetric in the indices:

��jj� = ���jj� (6.2)

Since we will have no use for vectors that cannot be covariantly di¤erentiated, we will take this as the
second general property of an arbitrary Riemannian vector.

In Riemannian space, any vector satisfying (6.2) is called a Killing vector. Its admission into a metric
indicates that the metric has a hidden or implicit symmetry. In the Weyl space we are considering,
however, this is not the case. To see this, recall that for a Killing vector �� to exist, the metric of a
in�nitesimally-transformed coordinate system x must be identical to the transformed metric in that same
system. Consequently, we demand that

x� = x� + ���

g��(x) = g��(x)

Using the identities

g��(x) = g��(x)
@x�

@x�
@x�

@x�

g��(x) = g��(x)� �g��j���

it is easy to show that the Killing equation is

2g��jj��
� + ��jj� + ��jj� = 0 (6.3)

which reduces to the usual form (6.2) when space is Riemannian. Note, however, that contraction of (6.3)
with ���� gives

��jj� �
��� = 0

while contraction with g�� yields
2a(n� 1)���� + g����jj� = 0

This shows that the covariant derivative of a Killing vector in a generalized Weyl space is not
antisymmetric with respect to its lower indices.
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Let us now see how the Weyl �eld �� itself behaves under parallel transport. We have

L2 = g������ ; 2LdL = g��jj�����dx
�

However, with the use of (5.4) we see that dL is identically zero. Since length invariance holds also for
covariant di¤erentiation, we have determined that the Weyl vector �� is a Riemannian vector and should
be subject to the conditions

��jj��
� = 0 ;

��jj� + ��jj� = 0

This is an odd result if we expect �� to have any relevance to the electromagnetic four-potential A�.
However, Galehouse has proposed that, in his consideration of quantum geodesics in �ve-dimensional space,

dx�

ds
= g��A�

indicating that in some respects the potential behaves as the unit tangent vector, which is a Riemannian
vector. If legitimate, this observation would support the proposition that �� is also a Riemannian vector.

As a demonstration of this otherwise empty formalism, let us derive the conservation law for
energy-momentum. The matter tensor T�� for a moving collection of incoherent, non-interacting particles
of density �(x) is de�ned by

T�� = �U�U�

The divergence of this quantity vanishes, in accordance with general relativity:

T��jj� = �U�jj�U
� + U�(�U�)jj� = 0

The �rst term on the right represents the equations of the geodesics, which vanish, leaving the conservation
law

(�U�)jj� = 0

It should be noted that this result cannot be derived from the original Weyl theory.

7. The Dirac Gamma Matrices as Riemannian Vectors
A very special kind of �vector�is the Dirac gamma matrix, which is used to de�ne the metric in spinor

space:

2g��(x) = 
�(x)
�(x) + 
�(x)
�(x) ; (7.1)


�

� = n ; (
0)2 = g00 ; (
i)2 = gii

Of course, the gamma matrices are not vectors in the normal sense (although the quantity  (x)
� (x),
where  is the adjoint of the Dirac spinor  , is a true contravariant vector), but for subsequent purposes
we will treat them as vectors.

But why would we want to consider these matrices as Riemannian vectors in the �rst place? To
answer this, consider the Heisenberg equation of motion, which relates the time translation of some
operator bO with the Hamiltonian H in elementary quantum mechanics:

i~
d bO
dt
= [ bO;H]

Since 
� is a Dirac matrix, we consider the time derivative of the position operator bxi with the Dirac
Hamiltonian

H = mc2
0 + c�jpj

= mc2
0 � i~c �jrj
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where the �j are the three hermitian Dirac alpha matrices. We then have

i~
dxi

dt
= i~c�ij�j ; or

�i =
dxi

cdt
' dxi

ds

In view of this and the de�nition of the gamma matrices


i = 
0�i

we have


� � 
0
dx�

ds
(7.2)

We avoid the equality sign here, because obviously the unit vector does not behave as a 4�4 matrix. But
since all the quantities in (7.2) are of magnitude unity, the asserted relationship between the gamma
matrices and the unit tangent vectors is at least plausible.

Now that we have rather more con�dence in the gamma matrices behaving as Riemannian vectors, let
us investigate some of their properties. By covariant di¤erentiation of the covariant form

2g�� = 
�
� + 
�
�

we have
2g��jj� = 
�jj�
� + 
�
�jj� + 
�jj�
� + 
�
�jj�

It is now easy to see that, given the symmetrization condition g��jj� + g��jj� + g��jj� �
�
g��jj�

	
= 0, we

have n�

�jj� + 
�jj�

�

� + 
�

�

�jj� + 
�jj�

�o
= 0

This can only be true if

�jj� + 
�jj� = 0

Thus, the indices in the di¤erentiated gamma matrices are antisymmetric, consistent with one of the
properties of a Riemannian vector. This same result could have been obtained by an alternative route. The
�square root�of the line element ds2 = g��dx

�dx�can be written as

Ads = 
�dx
� ; or

A = 
�
dx�

ds

where A is a constant idempotent matrix of trace zero (A cannot be the identity matrix, because this
would con�ict with the properties of the gamma matrices). Di¤erentiation with respect to ds then gives

0 = 
�j�
dx�

ds

dx�

ds
+ 
�

d2x�

ds2

=
�

�j� + 
��

�
��

� dx�
ds

dx�

ds

= 
�jj�
dx�

ds

dx�

ds

which again shows 
�jj� to be antisymmetric.
Similarly, covariant di¤erentiation of (7.1) gives

2g��jj� = 
�jj�

� + 
�
�jj� + 


�
jj�


� + 
�
�jj�

Noting that

g��jj� = a(n� 1)g���� and (7.3)


�jj� = (g��
�)jj�

= a(n� 1)g����
�
= a(n� 1)
���
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we have
2a(n� 1)g���� = 
�jj�


� + a(n� 1)
�
��� + a(n� 1)
�
��� + 
�

�
jj�

This reduces to

�jj�


� + 
�
�jj� = 0

which is remarkably similar to (6.1).

Lastly, for completeness we shall derive a few more properties of Riemannian vectors, several of which
equally well to the gamma �vectors.�Double covariant di¤erentiation of a Riemannian vector introduces
the Riemann-Christo¤el tensor via

��jj�jj� � ��jj�jj� = ���R����

Cyclic permutation of the lower indices in the Riemann-Christo¤el tensor results in the Bianchi identities

R���� +R
�
��� +R

�
��� = 0

Using these identities and the antisymmetry of ��jj�, it is easy to show that this vector also obeys a
Bianchi-like cyclic symmetry:

��jj�jj� + ��jj�jj� + ��jj�jj� = 0 (7.4)

From these expressions, we also get
��jj�jj� = ��R

�
���

Therefore, a Riemannian vector can be covariantly di¤erentiated twice only when the Riemann-Christo¤el
tensor is non-zero.

Consider now the expansion of ��jj�jj� :

��jj�jj� = ��jj�j� + ��jj��
�
�� + ��jj��

�
��

Symmetrization gives n
��jj�jj�

o
=
n
��jj�j�

o
+
n
��jj��

�
��

o
+
n
��jj��

�
��

o
= 0

Because ��jj� is antisymmetric in its indices while �
�
�� is symmetric, the last two terms cancel and we haven

��jj�j�

o
= 0

From elementary tensor theory, any antisymmetric tensor of rank two that satis�es this condition is
derivable from a potential quantity, so that

��jj� = k�j� � k�j�

The most visible example of this is the Maxwell electrodynamic stress tensor,

F�� = A�j� �A�j�

where A� is the four-potential.

This decomposition of Riemannian vectors can be extended in the case of the Dirac matrices. Because
g��jj� can be decomposed into terms involving the metric and the Weyl �eld ��, it should be possible to do
the same for 
�jj� . Using (5.3), let us expand in terms of the gamma matrices:

2g��jj� = 4ag���� � 2ag���� � 2ag����
= 
�jj�
� + 
�
�jj� + 
�jj�
� + 
�
�jj�

= a
�
��� + a
�
��� + a
�
��� + a
�
���

�a
�
��� � a
�
��� � a
�
��� � a
�
���
= a(
��� � 
���)
� + a(
��� � 
���)
�

+a
�(
��� � 
���) + a
�(
��� � 
���)
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Equating terms in the second and last lines (either beginning or ending with 
� or 
�), we see that a
su¢ cient (if not necessary) solution is


�jj� = a
�

��� � 
���

�
This result indicates that the 
� can be covariantly di¤erentiated only in a Weyl manifold. From this
expression and (7.4), it can easily be shown that the gamma matrices also satisfy the peculiar identity


�F�� + 
�F�� + 
�F�� = 0

where F�� = ��jj� � ��jj�. By raising and lowering indices, it can also be shown that


�jj� = a
�
���


��� � 
���
�


�jj� = a(n� 1)
���

results that are fully consistent with previous expressions.

8. Derivation of the Klein-Gordon and Dirac Equations in Weyl Space
In Riemannian space, the Laplacian of a scalar function '(x) is expressed by

r2' =
1p�g (

p
�gg��'j�)jj�

=
1p�gD�D�

�p
�gg��'

�
(8.1)

where D is the covariant derivative operator. When the spacetime dimension exceeds three, the notation is
replaced by the d�Alembertian operator, �2. In a Weyl space, the covariant derivative operators also act on
the metric terms, giving

p
�gjj� = a(n� 1)

p
�g ��;

g��jj� = a(n� 1)g����

Expanding (8.1), we have

�2' = 4a2(n� 1)2
p
�gg������'+ 2a(n� 1)

p
�gg����jj�' (8.2)

+4a(n� 1)
p
�gg����'j� +

p
�gg��'j�jj�

Now, the Klein-Gordon equation of quantum mechanics describes a spin-zero boson of mass m and is given
by the covariant expression

�2' = �m
2c2

~2
(8.3)

Following the fashion standard for problems of this sort, we assume a plane-wave solution of the form

' = exp

�Z �
k� � ��

�
dx�

�
where k�(x) is arbitrary for the time being (the integral is necessary because the arguments are functions
of the coordinates). Inserting this into (8.2), we indeed obtain a solution provided

a =
1

2(n� 1)
g��k�jj� = 0

g��k�k� = �m
2c2

~2
(8.4)
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We thus see that the vector k� has to be a Riemannian vector. We can bring this into more recognizable
form by the replacements

k� = � i
~
p�

�� =
iq

~c
A�

where q is the particle charge. Equation (8.4) now becomes

g��p�p� = m2c2

which we recognize as the magnitude of the relativistic four-momentum:

p� = (
E

c
; pi)

The solution ' is now

' = exp

�
� i
~

Z �
p� �

q

c
A�

�
dx�

�
which describes a spin-zero particle in an electromagnetic �eld with the �minimal�momentum correction
provided by A�.

A similar treatment can be assumed for the derivation of the Dirac equation, which explains spin-1/2
particles (fermions). The expression for the divergence in curvilinear tensor format is

1p�g
�p
�g��

�
jj�

Consideration of the form of the d�Alembertian operator in (8.3) indicates that this is the �square root�of
the d�Alembertian, or

� = 1p�g
�p
�g
� 

�
jj� =

imc

~
 

where the �scalar� is now a 4-component spinor. Expanding, we get the Dirac equation for a fermion in
an electromagnetic �eld:


�
�
@� �

iq

~c

�
 =

imc

~
 

9. More on the Dirac Gamma Matrices
The gamma matrices have many amazing properties, and they �gure prominently in all aspects of

modern quantum physics. Here we have focused on the coordinate-dependent versions of these matrices in
curved space which, as Weyl showed in 1929, can only be reached via tetrad transformations, which
transform Lorentz vectors to their coordinate (curved space) counterparts:


�(x) = ea�(x) 
a

where the 
a matrices are assumed to be in the standard (Dirac) representation. In Lorentz space, the
�at-space 
a have vanishing covariant derivatives, so the antiysymmetry of 
ajj� is academic. But by
transforming the 
a into spherical coordinates, the antisymmetry condition can easily be demonstrated. To
this end, let us perform the transformation using


� =
@x�

@x�

�; with

x = r sin � cos�

y = r sin � sin�

z = r cos �
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(We will have to assume that the zero-index matrix 
0 does not change.) Carrying out the calculations, we
then have


1 =

2664
0 0 cos � sin �e�i�

0 0 sin �ei� � cos �
� cos � � sin �e�i� 0 0
� sin �ei� cos � 0 0

3775


2 = r

2664
0 0 � sin � cos �e�i�

0 0 cos �ei� sin �
sin � � cos �e�i� 0 0

� cos �ei� � sin � 0 0

3775


3 = r sin �

2664
0 0 0 �ie�i�
0 0 iei� 0
0 ie�i� 0 0

�iei� 0 0 0

3775
All of which exhibit the same anticommutation properties as the 
a matrices along with the polar
anticommutation relations

2g��(r; �) = 
�
� + 
�
�

which, it is easy to demonstrate, are all consistent with 
�jj� = �
�jj�.

10. Final Thoughts
Although Weyl�s 1918 theory was quickly dispatched by Einstein, it has the peculiar habit of

persistently showing up in modern physics journals. And while its continuing popularity might be
attributed to its sheer mathematical beauty, it would also seem that the theory has persisted at least in
part because of the suspicion that Weyl had discovered something of fundamental importance. Although
Einstein�s objections to the theory seem to carry less weight today than they did in 1918, the
gauge-invariant (or conformal) aspects of the theory are still beset with problems involving physical
interpretation and geometrical relevance. If the line element ds, as Einstein had asserted, is indeed rescaled
at every spacetime point in a Weyl manifold, all time-dependent phenomena would depend upon their
prehistories, and the theory need not be further considered, regardless of its presumed beauty.

Here we have tackled a much simpler problem, the consistency of Weyl�s theory with regard to
constant-length vectors. As we have shown, the theory is easily amended, hopefully in a manner that
would have met with Weyl�s approval. Still, it is barely possible that the revised theory can be used to
shed additional light on Einstein�s argument. For example, Weyl proposed that the magnitude of a vector
�� would change according to

dL = a��Ldx
�

Integration of this expression around a closed curve leads toI
dL

L
= a

I
�� dx

�

But, as Einstein observed, for vector length to return into itself, Weyl�s �-�eld would have to satisfy curl
� = 0; the electromagnetic stress tensor F�� then vanishes, and Weyl�s geometry reverts to the Riemannian
case. However, in the generalized theory we have

2LdL = g��jj��
���dx�

= 2a(g���� � g����) ����dx� or

dL

L
= a

"
�� �

���
���

���
�

#
dx� (9.1)

We now see that the situation is more complicated, as it involves the vector itself.* But it is at least
possible that vector length could be preserved in (9.1) without placing any requirements on the curl of ��.
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Could we not just demand that
I
dL=L = 0 and be done with it? This would only require that

I
dL=L = 2�iN

where N is an integer. London investigated this very possibility, and with it found that the quantized
atomic radii of the simple Bohr atom could be derived from Weyl�s theory. But this requires that the Weyl
�eld �� be pure imaginary (and the connection terms complex), results that only present more
complications involving physical relevancy. In spite of these problems with Weyl�s theory, its innate and
indisputable mathematical beauty seems to point to a truth that remains ever elusive, an �old man�s toy�
that continues to tease and inspire.
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*Exercise. By relabeling indices in (9.1), show that

LdL =
1

2
a e���� e

��
�� �

�����dx�

where the e-quantity is the completely-antisymmetric Levi-Civita tensor (see Adler et al., p. 101). This
shows a little more clearly that dL = 0 if �� is any vector quantity proportional to �� or dx�.
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