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When Dirac first derived his relativistic electron equation in 1928, he was puzzled by the fact that
the solution involved a four-component object (subsequently identified as the Dirac spinor Ψ) rather than
a two-component one. The reason for this was Dirac’s expectation that the electron, already known at
the time to have two spin orientations (up and down), should be completely expressible in terms of 2×2
matrices, not 4×4 matrices. Consequently, the theory required four solutions (ψ1,ψ2, ψ3,ψ4) for a complete
description of the electron. What did the two additional solutions refer to?

Dirac eventually realized that while ψ1 and ψ2 do indeed describe spin-up and spin-down electrons, ψ3

and ψ4 describe spin-up and spin-down positrons, the antimatter equivalent of electrons. The positron (or
antielectron) was discovered experimentally by Anderson in 1932. Dirac’s theory, arguably the greatest
achievement of the human mind, has since become the cornerstone of relativistic quantum mechanics.

All physics students learn that physical quantities can be described as scalars, vectors and tensors. But
Dirac’s spinor is a completely different animal whose existence lies somewhere between scalars and vectors.
Given the fact that all observable matter in the universe is composed of fermions (quarks and leptons)
and their composites, it is disconcerting to learn that they are all spin-1/2 objects that must be described
mathematically by the spinor formalism, as least as far as their fundamental properties are concerned. Here
we will concentrate on one such property, which is their behavior under Lorentz transformations.

Review of the Lorentz Transformation

Basically, a Lorentz transformation redefines quantities (such as vectors) under rotations in 3-space and
“boosts” in four-dimensional spacetime (a boost refers to how measurements of space and time are compared
by observers in two different inertial reference frames traveling at a constant velocity with respect to one
another). The familiar Lorentz transformation of high school physics texts refers invariably to boosts alone,
but the full Lorentz transformation includes rotations as well. For example, the Lorentz boost equations
for inertial observers moving in the x1 direction with relative velocity v are given by

x0′ = γ
(
x0 − βx1

)
x1′ = γ(x1 − βx0)

where x0 = ct, β = v/c and

γ =
1√

1− β2

Given the last definition, it is convenient to relabel the boost parameter by substituting tanhφ = β, giving
us the resulting expressions coshφ = γ and sinhφ = βγ. We then have the familiar matrix expression

x0′

x1′

x2′

x3′

 =


coshφ − sinhφ 0 0
− sinhφ coshφ 0 0

0 0 1 0
0 0 0 1



x0

x1

x2

x3


However, since the Lorentz transformation also includes rotations, it is best to understand the transfor-

mation as derivable from the generators of rotations and well as boosts, which themselves are described as
rotations in spacetime. For example, consider the matrix

Ω =


coshφ1 − sinhφ1 0 0
− sinhφ1 coshφ1 0 0

0 0 1 0
0 0 0 1


1



The generator associated with this matrix is defined by

K1 = −i dΩ

dφ1
|φ1=0 = −i


0 −1 0 0
−1 0 0 0

0 0 0 0
0 0 0 0


We now define the Lorentz boost transformation with respect to x1 as the exponential matrix quantity
eiK1φ1 :

eiK1φ1 = I + iK1φ1 +
1

2!
(iK1φ1)2 +

1

3!
(iK1φ1)3 + . . .

= I + iK1

[
φ1 +

1

3!
φ31 + . . .

]
+ (iK1)2

[
φ21
2!

+
φ41
4!
. . .

]

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+ sinhφ1


0 −1 0 0
−1 0 0 0

0 0 0 0
0 0 0 0

+


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


I coshφi −


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




=


coshφ1 − sinhφ1 0 0
− sinhφ1 coshφ1 0 0

0 0 1 0
0 0 0 1


For boosts in the x2 and x3 directions, we have

K2 = −i dΩ

dφ2
|φ2=0 = −i


0 0 −1 0
0 0 0 0
−1 0 0 0

0 0 0 0



K3 = −i dΩ

dφ3
|φ3=0 = −i


0 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 0


with corresponding results for the transformation matrices, which we will provide shortly.

Similarly, there are generators for ordinary 3-space rotations. For example, a rotation about the x1 axis
is generated by the matrix

J1 = −i dΩ

dθ1
|θ1=0 = −i


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0


Expansion of eiJ1θ1 then gives the familiar result (this time we skip the details)

eiJ1θ1 = I + iJ1θ1 +
1

2!
(iJ1θ1)2 +

1

3!
(iJ1θ1)3 + . . .

=


0 0 0 0
0 1 0 0
0 0 cos θ1 sin θ1
0 0 − sin θ1 cos θ1


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while rotations about the other axes are generated by

J2 = −i dΩ

dθ2
|θ2=0 = −i


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0



J3 = −i dΩ

dθ3
|θ3=0 = −i


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0


Let us now put all this together. The full matrix of Lorentz transformations of boosts and rotations is given
by

eiJ·θ+iK·φ ≡ eΩ = exp


0 −φ1 −φ2 −φ3
−φ1 0 θ3 −θ2
−φ2 −θ3 0 θ1
−φ3 θ2 −θ1 0


(Please remember that only one rotation or one boost angle can be applied at any one time – you can’t do
two or more simultaneously!)

Note that the boost elements of the matrix Ω = Ωµ
ν (where µ denotes row and ν denotes column) are

symmetric while the rotation elements are antisymmetric. It is conventional to deal with this matrix with
both indices lowered by contraction with the metric tensor ηµν . For example,

Ω10 = η1µΩµ0 = −Ω1
0 = φ1 and

Ω12 = η1µΩµ2 = −Ω1
2 = −θ3

Thus, contraction of all the elements in Ω produces the completely antisymmetric matrix

Ωµν =


0 −φ1 −φ2 −φ3
φ1 0 −θ3 θ2
φ2 θ3 0 −θ1
φ3 −θ2 θ1 0


This result is highly significant, because we will pair this form of the Lorentz matrix with the Dirac matrices
to show how Dirac and Weyl spinors behave under Lorentz transformations.

Lorentz Transformation of Spinors

We start with Dirac’s electron equation in free space,

i~γµ∂µΨ = mcΨ

where Ψ is the Dirac spinor and the four γµ are the Dirac (gamma) matrices. There are several represen-
tations of these matrices available, but we will use what is commonly referred to as the Weyl (or chiral)
representation:

γ0 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , γ1 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0



γ2 =


0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0

 , γ3 =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0


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or, equivalently,

γ0 =

[
0 1
1 0

]
, γj =

[
0 −σj
σj 0

]
where each entry is a 2×2 matrix – I is the unit matrix and the σj are the three Pauli matrices. Consequently,Ψ
must be a 4-component column matrix, which we can also express in two-dimensional form via

Ψ =


ψ1

ψ2

ψ3

ψ4

 =

[
ψR
ψL

]

where the subscripts refer arbitrarily (for the time being) to right and left.
The Lorentz invariance of the Dirac equation is evident, but it can be viewed in one of two ways. Since

the differentiation operator ∂µ is obviously a covariant vector, we appear to have the choice of taking the
set of matrices γµ as a contravariant vector, making the combination γµ∂µ a scalar, with Ψ itself also a
scalar. The other view is to assume that the γµ are fixed in the forms given above; Lorentz invariance of the
Dirac equation would then require that Ψ display some unusual property under Lorentz transformations
that counterbalances the transformation of ∂µ.

In 1955, R.H. Good showed that any choice of Dirac matrices γµ can be made equivalent to the fixed
matrices by a suitable unitary transformation, meaning that both moving and stationary observers can use
the same set of matrices. This necessarily forces us to accept the fact that the quantity Ψ is not a scalar
after all, but somehow transforms appropriately under a Lorentz transformation. The job now is to find
out how.

Let us first assume that a Dirac spinor changes under a Lorentz transformation by

Ψ′(x′) = SΨ(x) (1)

where S is a constant 4×4 matrix to be determined. We will also assume that S has an inverse such that

Ψ = S−1Ψ′

and S−1S = 1. The Dirac equation

i~γµ∂µΨ = mcΨ

in the primed system is then

i~γµ∂′µΨ′ = mcΨ′

with the Dirac matrices unchanged. Using (1) and ∂′µ = Ωαµ∂α we have

i~γµΩαµ∂αSΨ = mcSΨ

= i~Sγα∂αΨ

Left-multiplication by S−1 then gives

S−1γµSΩαµ = γα

where we have used the constancy of S to write ∂αS = S∂α. Bringing the Lorentz factor over to the right
then leaves

S−1γαS = Ωαβγ
β (2)

Up to this point we have no idea what the operator S should look like. But from (2) it should be obvious
that it must contain the components of the Lorentz matrix Ωαµ along with the Dirac matrices, so we venture
to write
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S ∼ Ωανγαγ
ν = Ωµνγ

µγν (3)

To get a definitive form for S, we use the standard trick of taking infinitesimal approximations for S and
exp Ω. Thus,

S = 1 + k∆Ωµνγ
µγν ,

S−1 = 1− k∆Ωµνγ
µγν ,

eω = δµα + ∆Ωµα

where k is some constant to be determined, δµα is the Kronecker symbol and ∆Ωµα is the Lorentz matrix of
infinitesimal boosts and angles. Plugging these expressions into (3), we have

(1− k∆Ωαβγ
αγβ)γµ(1 + kΩλργ

λγρ) = (δµα + ∆Ωµα)γα

which, after some reduction and relabeling, gives

k∆Ωαβγ
µγαγβ − k∆Ωαβγ

αγβγµ = ∆Ωµαγ
α

We must now move the γα matrix on the two terms on the left all the way to the right to match the γα
term on the right-hand side. This is done by using identities like

γαγβγµ = (2ηαβ − γβγα)γµ

along with the antisymmetry of Ωµν . After several such operations, we easily find that 4k∆Ωµαγ
α = ∆Ωµαγ

α,
so that k = 1/4. Thus, the infinitesimal form for S is

S = 1 +
1

4
∆Ωµνγ

µγν

For any finite Lorentz transformation we can build up S using n successive applications of the above
expression. Using ∆Ωµν = Ωµν/n, we have

S = lim
n→∞

(1 +
1

4

Ωµν
n
γµγν)n or

S = exp(
1

4
Ωµνγ

µγν)

which is the correct definition for the finite Lorentz transformation operator. Finally, let us note that the
summation of indices in Ωµνγ

µγν includes terms involving µ = ν and µ 6= ν. Using the antisymmetry of
Ωµν and the anticommutation properties of the Dirac matrices, we see that an apparent double counting
occurs; this can be eliminated by writing

S = exp(
1

4
Ωµνγ

µγν) = exp(
1

2
Ωµνγ

µγν) (for µ < ν)

Thus, the ubiquitous 1/2 factor found in spinorial calculations results because of the way the Dirac spinor Ψ
changes under a Lorentz transformation. An immediate consequence of this is seen in ordinary rotations –
a spinor rotated by 360 degrees does not return to itself, but merely changes sign; a full 720-degree rotation
is required to bring the spinor back.

Perhaps the most interesting aspect of the above definition for S (at least in the Weyl representation)
is the fact that it is block diagonal. This can be seen by a straightforward expansion of the exponential in
terms of the Pauli matrices:

1

2
Ωµνγ

µγν =
1

2

[
Ω0kγ

0γk + Ω12γ
1γ2 + Ω13γ

1γ3 + Ω23γ
2γ3
]

=
1

2
φk

[
σk 0

0 −σk
]

+
1

2
iθk

[
σk 0

0 σk

]

5



so that

S = exp

[
1
2 iσ · θ − 1

2σ · φ 0
0 1

2 iσ · θ + 1
2σ · φ

]
(4)

Note the all-important sign change for the boost angles in the lower right 2×2 matrix of (4) – it makes the
lower row distinct from the upper row, so we have two inequivalent representations of 2-component spinors.
To see this, recall the earlier form of the Dirac spinor

Ψ =

[
ψR
ψL

]
where each entry in the column is a two-component spinor. By virtue of (4), these spinors transform
differently in accordance with

ψ′R = exp

(
1

2
iσ · θ − 1

2
σ · φ

)
ψR

ψ′L = exp

(
1

2
iσ · θ +

1

2
σ · φ

)
ψL

The quantities ψR and ψL are called Weyl spinors and, unlike the Dirac spinor, they are irreducible; in
this sense they are more fundamental than the Dirac spinor. However, it can be shown that Weyl spinors
do not preserve parity (that is, they are not invariant with respect to the change x → −x), and for this
reason Weyl spinors were assumed to represent neutrinos, which are all left-handed (described by ψL) while
antineutrinos are all right-handed (described by ψR). The Dirac spinor, being composed of both spinors, is
fully parity-preserving.

The Dirac (or Standard) Representation

The above analysis is based on the Weyl (or chiral) representation of the Dirac matrices. For many appli-
cations of quantum field theory, the Dirac (or standard) representation of the matrices is preferred. In this
representation we have

γ̄0 =

[
1 0
0 −1

]
with the other Dirac matrices the same (except for a sign change). This representation necessarily mixes
the Weyl spinors under Lorentz transformations, so their distinction is not so noticeable. To see this more
clearly, consider the transformation matrix S in non-exponential form (x1 direction only, no rotations):

S =

[
cosh 1

2φ1 − σ
1 sinh 1

2φ 0
0 cosh 1

2φ1 + σ1 sinh 1
2φ

]
The decoupling of the Weyl spinors is of course preserved with this form. However, in the Dirac represen-
tation this changes in accordance with the transformation S → S̄, where

A = A−1 =
1√
2

[
1 1
1 −1

]
γ0 → γ̄0 = A−1γ0A

γk → γ̄k = A−1γkA

S → S̄ = A−1SA

so that
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γ̄0 =

[
1 0
0 −1

]
γ̄k =

[
0 σk

−σk 0

]
S̄ =

[
cosh 1

2φ1 −σ1 sinh 1
2φ1

−σ1 sinh 1
2φ1 cosh 1

2φ1

]
which mixes the spinors ψR and ψL.

Comments

Because of the irreducibility of Weyl spinors, they have been used as the fermion basis of supersymmetry
theories, where either ψR or ψL (or both) can be used in the construction. It is a simple matter to
construct Lorentz-invariant Lagrangians out of either spinor; for example, the quantity ψTL (iσ2)ψL (where
the T stands for transpose) is a Lorentz-invariant spinor scalar. Supersymmetry is an attempt to provide
a unified approach to bosonic and fermionic field theories; one of its predictions is the existence of a host
of hypothetical new particles (spin-1/2 photinos, squarks, selectrons, etc.). However, as of this writing the
results of high-energy scattering experiments at the Large Hadron Collider appear to rule out the existence
of such particles, placing doubt on the validity of supersymmetry.
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